
 July 2012

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.

Principled System Architecture

prerequisite for resilience

Robert Rasmussen

Keck Institute for Space Studies — Workshop: Engineering Resilient Space Systems

 July 2012

“Resilience”

 Literally, the ability to spring back
 Resilient systems work, no matter what

 Brittle systems are not resilient
 Small problems easily break them

2

 July 2012

Engineered Resilience
 Resilience in nature

arises over many
generations through
trial and error

 Engineered resilience
must often be right
the first time

3

 July 2012

Many Ways to Fail
  Stakeholder concerns that aren’t

properly appreciated, reconciled,
or accommodated

  Progress thwarted by intolerance
to development uncertainties

  System interactions that come as
a surprise

  Late discovery of design or
implementation errors

  Unvalidated assumptions
  Poor risk assessments
  Inadequate or misapplied V&V
  Unethical conduct
  Flight manifestation of

uncorrected design flaws

 Fatal defects in materials,
implementation, workmanship,
tools…

 Unusual or unanticipated
environments

  Stress damages the system
  Control outside the validated

regime
  Inability to degrade gracefully
 Changes in mission or usage that

violate assumptions
 Operator error
 Malicious action

et cetera!

Often an unfortunate combination of things
Often resulting in convoluted behavior

4

 July 2012

We Know
What Resilience Looks Like

5

* So far, dependent on
many clever people
and considerable luck

Apollo 13*

Innovative repurposing

Galileo*

Computing margin and
flexible re-programmability

Hubble Space
Telescope*

On-orbit instrument
replaceability

Titan Balloon

Self-direction and
tolerance for variety

T-800

Graceful degradation and
goal-oriented behavior

 July 2012

Robustness is like siege defense:
 Strong walls and plenty of supplies,
 but not much freedom

Still Largely a Defensive Exercise
 Robust engineering tolerance

is largely concerned with prescribed
variation
 Depends on an assured perimeter

  Qualification ranges, diligent oversight,
“test as you fly…”, conservative analysis…

 And ample resources
  Overdesign, operating margins, redundancy,

schedule slack, opportunity to retry…

 Okay for lots of systems,
but always a limiting strategy
  Retry or retreat can’t be the answer to every

challenging situation
6

 July 2012

Do We Defend or Adapt?
 Defense is increasingly an

incomplete strategy
 Robustness is already a hard problem
 But problems are trending beyond

robustness to matters
of astuteness

 Defense must be augmented with Adaptation
 Figure out what’s happening and deal with it creatively
 Less canned responses; more cognitive, coherent deliberation
 Depends on acquiring knowledge, and an ability to solve problems

and to improvise

 This makes a hard problem much harder

7

 July 2012

Tough Architectural Questions
 When is resilience the right answer?

 Where does resilience fit among all other
system concerns?

 What are the technical and programmatic
building blocks of resilience?

 How does one provide a fundamental,
reasoned basis for declaring that a system
has resilience?

8

 July 2012

A Systems Engineering Challenge
  No simple sum of technologies will do

  Resilience of a system can’t be derived from resilience of its parts
  Resilience can’t injected into a system or added onto it

  Like all architectural considerations, resilience is a
system characteristic
  Simple problems can topple whole systems
  All parts of system must participate in solutions
  Adaptation requires reasoning about the system
  Reasoning requires understandable systems

  “The System” is not one thing, but many
  Variation, surprise, and invention are to be expected, not avoided
  Adaptation solutions are open ended
  Engineering the design space is “architecture”

9

 July 2012 10

A Definition
 A System is anything greater than the sum of

its parts
 Every part affects others — the parts become

one
 New attributes, not intrinsic to the parts, arise

solely from these interactions
 This phenomenon is commonly referred to

as emergence

 Systems are intrinsically about
 what is added
 through interaction

 July 2012 11

Interaction, Not Interface
 Interactions can be…

 Exchanges of material, energy, or information
 Coupled attributes or shared constraints
 Planned or not planned

 Interfaces per se are not paramount
 What matters is how each part affects the

others

Winslow Homer (1836 –1910)

 July 2012

similar
parts

similar
systems

12

Emergence, Not Integration
 Additions can be new capabilities, functions, or

behaviors . . . abstract entities, but…

 The resulting systems are new, real things
in their own right

 Not merely an arrangement
of parts and interfaces

 Similar arrangements of
different parts can yield
essentially the same system

 Different arrangements of
similar parts can yield
quite different systems

 July 2012 13

The Value in Thinking This Way
 If you start to think about the features

you want as things that must emerge
through interaction…

 Then you can’t help also wondering about
other things that might emerge, besides
the ones you intended
 Whatever produces one will inevitably produce

the other as a side effect
 You must always worry about both

 How would you know?!

 July 2012

 As complexity grows, the number of potential
interactions grows disproportionately

 Each layer removes us further from core analytical
capabilities

 Confidence diminishes in explaining how things
work a priori

 Even “correct” designs surprise us routinely

14

The Complexity Crisis

G R O W I N G C O M P L E X I T Y

 July 2012

Complexity ⇒ Misunderstanding
 Complexity is basically a measure of how

hard something is to understand
 Variety, connectivity, depth, instability, opacity,

intricacy, uncertainty, ambiguity…
 Applies to both analysis and communication

 Complexity occupies the space between
understanding and reality
 For a complex system to succeed, many things

have to be done right
 However, a complex system can fail, even when

all its parts work as designed

15

 July 2012 16

The Central Problem…
 In both science and engineering:

Find simple rules for complex behavior

 Rules are sought wherever there are patterns
 Patterns are expressions of the underlying rules

  Recurring structure
  Invariants among items, which may appear on the surface to

be different
  Layered descriptions

  Ideas explained in terms of what’s already understood
  Separation of concerns

  Limits on what must be considered at one moment
 etc.

 July 2012 17

Good Patterns…
 Not only describe — they explain!

 As theories improve, they tend to become
conceptually more abstract and layered

 So the rules at each layer can become simpler

fractal fern

Conus textile

DNA

NGC 4696

0
1
1
2
3
5
8
13
21
34
55
89
144

Fibonacci spirals

 July 2012

In Engineering
The Same Principles Apply

 Patterns impose order
 Recurring Structure —

  Mass production, standards for interface/form/
process…

 Layered Descriptions —
  Hierarchical system design, protocol stacks…

 Separation of Concerns —
  Functional decomposition, weak coupling,

modularity…

 Order fosters understandability

 These are the organizing Concepts of the
architecture

18

 July 2012

Complex
Realization:

19

Concepts Can Get Lost
  Each part of a system participates

in many concepts
  This many-to-few mapping is

responsible for troublesome
entanglement of concepts in a
complex system

Example
An IMU is not merely a unit
satisfying many disparate
requirements flowed down
“from above”
It is…

• a sensor in a
control concept

• a region in a fault
containment concept

• a load in a
power concept

• a critical item in a
safing concept

• a node in a
networking concept

• a ward in a
shielding concept

• a source in a
telemetry concept,

 and so on
Many more conceptual
parts than realizational
parts

 July 2012

Nonetheless,
Realization Seems To Rule!

 We tend to describe concepts in terms of
their concrete implementations, rather than
basic ideas
 Levels gets flattened
 Disparate concerns are swept together
 Attention shifts from similarities to differences
 General rules are replaced by point design

descriptions
 Complexity moves in to exploit

inattention to pattern

20

 July 2012

Concepts Need Space
 If concepts aren’t clearly and separately

delineated, patterns can’t assert themselves in a
systematic or reliable way
 Even in realization, concepts must remain clearly

articulated
 Handling each concept on its own terms permits

each to take its preferred form
 Many concepts can overlap in the same system,

despite widely disparate structures
  E.g., the physical and logical structure of the Internet are

completely different (diverse inter-connected networks
versus layered protocols)

21

 July 2012

Pattern versus Design
  Conceptual patterns must retain prominence throughout

the lifecycle
  The rules that give rise to these patterns comprise a set

of constraints on what we can design
  They tell us both what the design can and cannot be
  They allow as design only what can be analyzed or validated

  They help us see what is essential to a design concept

  It is from such rules and exclusions that engineering
elegance is possible — without which…
  Systems become increasingly muddled with incidental complexity
  Piecemeal, ad hoc accommodations gradually ossify designs
  Understanding becomes increasingly difficult
  Shortfalls in functionality and efficiency are inevitable

22

 July 2012 23

However,
Not All Patterns are Created Equal

 We are awash in engineering “patterns”
  Projects generate thousands of pages of design description in

many forms
  They describe modules, hierarchies, protocols, design

requirements, processes, and so on — eventually in great detail
  There are schemes for bus communications, power & grounding,

fault containment, sequence coordination, time synchronization,
and on and on

  It’s a mixed story
  Some work a lot better than others
  Some are arbitrary
  And some old standbys are notoriously poor

 Many, however, have no clear conceptual delineation
  We know something important is happening, but…
  Like undiscovered Laws of Nature, they have no explanatory

power

 July 2012 24

Lessons from Nature
 Complex, engineered systems are

understandable only if well-chosen patterns
are imposed to make understanding possible

 We seek patterns that are…
 Stable — won’t need frequent revision
 Fundamental — broadly address important

issues

 As in nature these tend to be simple
 But being complete and consistent are also

essential

 July 2012 25

Also Important…
 Good patterns adhere strongly to aesthetics,

experience, and fundamental principles
 Their rules enable modeling of adequate form &

fidelity to address all attributes of concern
 They are easily explained, so that compliance

can be required and verified

  In other words, we choose the patterns that
permit us to demonstrate with confidence the
correctness and suitability of our concepts

Good patterns
make such understanding practical

 July 2012

A Fault Management Example

26

 July 2012

Typical Fault Management Notions
“Concepts”

  Fault Tree, Failure Modes &
Effects Analysis

  Error, Fault, Failure
  Threshold, Event, Persistence
  Detection, Monitor, Isolation,

Response
  Priority, Level
  Critical Period, Mark & Rollback
  Safing

“Patterns”
  Monitors trigger responses
  Every monitor and response

can be disabled
  Responses terminate

command sequences

“Principles”
  Respond only to unacceptable

conditions
  Avoid hair triggers and retriggering
  Tolerate false alarms
  Make parameters commandable
  Corroborate before severe

responses
  Ensure commandability and long

term safety
  Preserve consumables and critical

data
  Log events and actions

etc.

etc.

etc.

27

 July 2012

Fundamental?
 Not Really

 Imprecise and fragmented concepts
 Weak patterns and principles
 Exceptions and omissions
 Cluttered with incidentals

 Part of an even larger collection of interrelated
notions in system management

 Yet generally implemented separate from them

 No concise “Theory of Fault Protection”

28

 July 2012

A Sample Conceptual Mapping Issue
 Persistence threshold value:

 Appears in monitoring functions, but is it…
 Likelihood, transient duration, system error

tolerance, response delay, false alarm avoidance,
or what?

 Role depends on assumed meaning
 Detection in state estimation
 Branching in control decisions
 Precedence among objectives
 etc.

29

 July 2012

Back to Basics
What Does Fault Management Do?

  Observes the system (measurements…)

  Uses models (failure modes…)

  Estimates system state (health, hazards…)

  Choses and coordinates (conflicts, resource use…)
actions

  Directs the system (commands…)

  Meets system objectives (safety, viability, critical events…)

30

Fault Management is
 a Control System

Fault Management is part of
 an integrated Control System

 July 2012

Cognitive Control Fundamentals
Concepts

  Objectives on state
  Models of state behavior
  Knowledge of state
  Closed control loops on state

Patterns
  Each system state is assigned

a cognizant control system
  Control systems interact via

explicit state knowledge and
coordinated objectives

  Knowledge and control
designs exploit models

Principles
  Make objectives explicit,

complete and clear
  Uniquely assign responsibility

for all objectives on a state
  Make model usage apparent

and consistent
  Explicitly coordinate

concurrent objectives
  Keep state estimation

independent of state control
  Represent state knowledge

uncertainty openly and
objectively

  Strive for a single source of
truth for state knowledge

  Make control decisions based
only on state knowledge and
objectives

31

 July 2012

Differences in Perspective
When Concepts Retain Prominence

 “Fault management” detects and responds
to faults

 Fault tolerant control systems achieve
important system objectives, even when
faults happen

 “Fault management” is verified by testing
all monitors and responses

 Fault tolerant control systems are verified
by showing how well they guard expectations
of system performance

and so on
32

 July 2012

Resilience Architecture
 What are the patterns and principles of

resilience?
  If there is not theory for fault tolerance (or other

matters), how could there be one for resilience?
 Is overall architectural integrity a prerequisite for

resilience?
  If an architecture can’t easily be understood, how could

one claim it is resilient?
 How can architectural concepts for resilience be

integrated without losing their integrity?
  If the patterns and principles of resilience aren’t

apparent in the system, how would one know they are
still there?

33

 July 2012

Conclusion

Resilience starts
with strong concepts

Resilience ends

when conceptual integrity is lost

Practice principled architecture!

34

