
  July 2012 

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. 

Principled System Architecture 
 

prerequisite for resilience 

Robert Rasmussen 

Keck Institute for Space Studies — Workshop: Engineering Resilient Space Systems 



  July 2012 

“Resilience” 

 Literally, the ability to spring back 
 Resilient systems work, no matter what 

 Brittle systems are not resilient 
 Small problems easily break them 
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Engineered Resilience 
 Resilience in nature 

arises over many 
generations through  
trial and error 

 Engineered resilience 
must often be right 
the first time 
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Many Ways to Fail 
  Stakeholder concerns that aren’t 

properly appreciated, reconciled, 
or accommodated 

  Progress thwarted by intolerance 
to development uncertainties 

  System interactions that come as 
a surprise 

  Late discovery of design or 
implementation errors 

  Unvalidated assumptions 
  Poor risk assessments 
  Inadequate or misapplied V&V 
  Unethical conduct 
  Flight manifestation of 

uncorrected design flaws 

 Fatal defects in materials, 
implementation, workmanship, 
tools… 

 Unusual or unanticipated 
environments 

  Stress damages the system 
  Control outside the validated 

regime 
  Inability to degrade gracefully 
 Changes in mission or usage that 

violate assumptions 
 Operator error 
 Malicious action 

et cetera! 

Often an unfortunate combination of things 
Often resulting in convoluted behavior 
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We Know 
What Resilience Looks Like 
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* So far, dependent on 
many clever people 
and considerable luck 

Apollo 13* 

Innovative repurposing 

Galileo* 

Computing margin and  
flexible re-programmability 

Hubble Space 
Telescope* 

On-orbit instrument 
replaceability 

Titan Balloon 

Self-direction and  
tolerance for variety 

T-800 

Graceful degradation and  
goal-oriented behavior 
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Robustness is like siege defense: 
  Strong walls and plenty of supplies,  
  but not much freedom 

Still Largely a Defensive Exercise 
 Robust engineering tolerance  

is largely concerned with prescribed  
variation 
 Depends on an assured perimeter 

  Qualification ranges, diligent oversight,  
“test as you fly…”, conservative analysis… 

 And ample resources 
  Overdesign, operating margins, redundancy,  

schedule slack, opportunity to retry… 

 Okay for lots of systems,  
but always a limiting strategy 
  Retry or retreat can’t be the answer to every 

challenging situation 
6 



  July 2012 

Do We Defend or Adapt? 
 Defense is increasingly an  

incomplete strategy 
 Robustness is already a hard problem 
 But problems are trending beyond  

robustness to matters  
of astuteness 

 Defense must be augmented with Adaptation 
 Figure out what’s happening and deal with it creatively 
 Less canned responses; more cognitive, coherent deliberation 
 Depends on acquiring knowledge, and an ability to solve problems 

and to improvise 

 This makes a hard problem much harder 
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Tough Architectural Questions 
 When is resilience the right answer? 

 Where does resilience fit among all other 
system concerns? 

 What are the technical and programmatic 
building blocks of resilience? 

 How does one provide a fundamental, 
reasoned basis for declaring that a system 
has resilience? 
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A Systems Engineering Challenge 
  No simple sum of technologies will do 

  Resilience of a system can’t be derived from resilience of its parts 
  Resilience can’t injected into a system or added onto it 

  Like all architectural considerations, resilience is a 
system characteristic 
  Simple problems can topple whole systems 
  All parts of system must participate in solutions 
  Adaptation requires reasoning about the system 
  Reasoning requires understandable systems 

  “The System” is not one thing, but many 
  Variation, surprise, and invention are to be expected, not avoided 
  Adaptation solutions are open ended 
  Engineering the design space is “architecture” 
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A Definition 
 A System is anything greater than the sum of 

its parts 
 Every part affects others — the parts become 

one 
 New attributes, not intrinsic to the parts, arise 

solely from these interactions 
 This phenomenon is commonly referred to 

as emergence 

 Systems are intrinsically about 
 what is added 
  through interaction 
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Interaction, Not Interface 
 Interactions can be… 

 Exchanges of material, energy, or information 
 Coupled attributes or shared constraints 
 Planned or not planned 

 Interfaces per se are not paramount 
 What matters is how each part affects the 

others 

Winslow Homer (1836 –1910)  
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similar 
parts 

similar 
systems 
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Emergence, Not Integration 
 Additions can be new capabilities, functions, or 

behaviors . . . abstract entities, but… 

 The resulting systems are new, real things 
in their own right 

 Not merely an arrangement  
of parts and interfaces 

 Similar arrangements of 
different parts can yield 
essentially the same system 

 Different arrangements of 
similar parts can yield 
quite different systems 
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The Value in Thinking This Way 
 If you start to think about the features 

you want as things that must emerge  
through interaction… 

 Then you can’t help also wondering about 
other things that might emerge, besides 
the ones you intended 
 Whatever produces one will inevitably produce 

the other as a side effect 
 You must always worry about both 

 How would you know?! 
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 As complexity grows, the number of potential 
interactions grows disproportionately 

 Each layer removes us further from core analytical 
capabilities 

 Confidence diminishes in explaining how things 
work a priori 

 Even “correct” designs surprise us routinely 
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The Complexity Crisis 

G R O W I N G  C O M P L E X I T Y  
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Complexity ⇒ Misunderstanding 
 Complexity is basically a measure of how 

hard something is to understand 
 Variety, connectivity, depth, instability, opacity, 

intricacy, uncertainty, ambiguity… 
 Applies to both analysis and communication 

 Complexity occupies the space between 
understanding and reality 
 For a complex system to succeed, many things 

have to be done right 
 However, a complex system can fail, even when  

all its parts work as designed 
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The Central Problem… 
 In both science and engineering: 

Find simple rules for complex behavior 

 Rules are sought wherever there are patterns 
 Patterns are expressions of the underlying rules 

  Recurring structure 
  Invariants among items, which may appear on the surface to 

be different 
  Layered descriptions 

  Ideas explained in terms of what’s already understood 
  Separation of concerns 

  Limits on what must be considered at one moment 
 etc. 
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Good Patterns… 
 Not only describe — they explain! 

 As theories improve, they tend to become 
conceptually more abstract and layered 

 So the rules at each layer can become simpler 

fractal fern 

Conus textile 

DNA 

NGC 4696 

0 
1 
1 
2 
3 
5 
8 
13 
21 
34 
55 
89 
144 

Fibonacci spirals 
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In Engineering 
The Same Principles Apply 

 Patterns impose order 
 Recurring Structure —  

  Mass production, standards for interface/form/
process… 

 Layered Descriptions —  
  Hierarchical system design, protocol stacks… 

 Separation of Concerns —  
  Functional decomposition, weak coupling, 

modularity… 

 Order fosters understandability 

 These are the organizing Concepts of the 
architecture 
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Complex 
Realization: 
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Concepts Can Get Lost 
  Each part of a system participates  

in many concepts 
  This many-to-few mapping is  

responsible for troublesome  
entanglement of concepts in a  
complex system 

Example 
An IMU is not merely a unit 
satisfying many disparate 
requirements flowed down 
“from above” 
It is… 

• a sensor in a 
control concept 

• a region in a fault 
containment concept 

• a load in a 
power concept 

• a critical item in a 
safing concept 

• a node in a 
networking concept 

• a ward in a 
shielding concept 

• a source in a 
telemetry concept, 

 and so on 
Many more conceptual 
parts than realizational 
parts 
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Nonetheless,  
Realization Seems To Rule! 

 We tend to describe concepts in terms of 
their concrete implementations, rather than 
basic ideas 
 Levels gets flattened 
 Disparate concerns are swept together 
 Attention shifts from similarities to differences 
 General rules are replaced by point design 

descriptions 
 Complexity moves in to exploit  

inattention to pattern 
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Concepts Need Space 
 If concepts aren’t clearly and separately 

delineated, patterns can’t assert themselves in a 
systematic or reliable way 
 Even in realization, concepts must remain clearly 

articulated 
 Handling each concept on its own terms permits 

each to take its preferred form 
 Many concepts can overlap in the same system, 

despite widely disparate structures 
  E.g., the physical and logical structure of the Internet are  

completely different (diverse inter-connected networks  
versus layered protocols) 
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Pattern versus Design 
  Conceptual patterns must retain prominence throughout 

the lifecycle 
  The rules that give rise to these patterns comprise a set 

of constraints on what we can design 
  They tell us both what the design can and cannot be 
  They allow as design only what can be analyzed or validated 

  They help us see what is essential to a design concept 

  It is from such rules and exclusions that engineering 
elegance is possible — without which… 
  Systems become increasingly muddled with incidental complexity 
  Piecemeal, ad hoc accommodations gradually ossify designs 
  Understanding becomes increasingly difficult 
  Shortfalls in functionality and efficiency are inevitable 
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However, 
Not All Patterns are Created Equal 

 We are awash in engineering “patterns” 
  Projects generate thousands of pages of design description in 

many forms 
  They describe modules, hierarchies, protocols, design 

requirements, processes, and so on — eventually in great detail 
  There are schemes for bus communications, power & grounding, 

fault containment, sequence coordination, time synchronization, 
and on and on 

  It’s a mixed story 
  Some work a lot better than others 
  Some are arbitrary 
  And some old standbys are notoriously poor 

 Many, however, have no clear conceptual delineation 
  We know something important is happening, but… 
  Like undiscovered Laws of Nature, they have no explanatory 

power 
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Lessons from Nature 
 Complex, engineered systems are 

understandable only if well-chosen patterns 
are imposed to make understanding possible  

 We seek patterns that are… 
 Stable — won’t need frequent revision 
 Fundamental — broadly address important 

issues 

 As in nature these tend to be simple 
 But being complete and consistent are also 

essential 
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Also Important… 
 Good patterns adhere strongly to aesthetics, 

experience, and fundamental principles 
 Their rules enable modeling of adequate form & 

fidelity to address all attributes of concern 
 They are easily explained, so that compliance 

can be required and verified 

  In other words, we choose the patterns that  
permit us to demonstrate with confidence the 
correctness and suitability of our concepts 

Good patterns 
make such understanding practical 
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A Fault Management Example 
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Typical Fault Management Notions 
“Concepts” 

  Fault Tree, Failure Modes & 
Effects Analysis 

  Error, Fault, Failure 
  Threshold, Event, Persistence 
  Detection, Monitor, Isolation, 

Response 
  Priority, Level 
  Critical Period, Mark & Rollback 
  Safing 

“Patterns” 
  Monitors trigger responses 
  Every monitor and response 

can be disabled 
  Responses terminate 

command sequences 

“Principles” 
  Respond only to unacceptable 

conditions 
  Avoid hair triggers and retriggering 
  Tolerate false alarms 
  Make parameters commandable 
  Corroborate before severe 

responses 
  Ensure commandability and long 

term safety 
  Preserve consumables and critical 

data 
  Log events and actions 

etc. 

etc. 

etc. 
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Fundamental? 
 Not Really 

 Imprecise and fragmented concepts 
 Weak patterns and principles 
 Exceptions and omissions 
 Cluttered with incidentals 

 Part of an even larger collection of interrelated 
notions in system management 

 Yet generally implemented separate from them 

 No concise “Theory of Fault Protection” 
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A Sample Conceptual Mapping Issue 
 Persistence threshold value: 

 Appears in monitoring functions, but is it… 
 Likelihood, transient duration, system error 

tolerance, response delay, false alarm avoidance, 
or what? 

 Role depends on assumed meaning 
 Detection in state estimation 
 Branching in control decisions 
 Precedence among objectives 
 etc. 
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Back to Basics 
What Does Fault Management Do? 

  Observes the system  (measurements…) 

  Uses models  (failure modes…) 

  Estimates system state  (health, hazards…) 

  Choses and coordinates  (conflicts, resource use…) 
actions 

  Directs the system  (commands…) 

  Meets system objectives  (safety, viability, critical events…) 
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Fault Management is 
  a Control System 

Fault Management is part of  
 an integrated  Control System 
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Cognitive Control Fundamentals 
Concepts 

  Objectives on state 
  Models of state behavior 
  Knowledge of state  
  Closed control loops on state 

Patterns 
  Each system state is assigned 

a cognizant control system 
  Control systems interact via 

explicit state knowledge and 
coordinated objectives 

  Knowledge and control 
designs exploit models 

Principles 
  Make objectives explicit, 

complete and clear 
  Uniquely assign responsibility 

for all objectives on a state 
  Make model usage apparent 

and consistent 
  Explicitly coordinate 

concurrent objectives 
  Keep state estimation 

independent of state control 
  Represent state knowledge 

uncertainty openly and 
objectively 

  Strive for a single source of 
truth for state knowledge 

  Make control decisions based 
only on state knowledge and 
objectives 
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Differences in Perspective 
When Concepts Retain Prominence 

 “Fault management” detects and responds 
to faults 

 Fault tolerant control systems achieve 
important system objectives, even when 
faults happen 

 “Fault management” is verified by testing  
all monitors and responses 

 Fault tolerant control systems are verified 
by showing how well they guard expectations 
of system performance 

and so on 
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Resilience Architecture 
 What are the patterns and principles of 

resilience? 
  If there is not theory for fault tolerance (or other 

matters), how could there be one for resilience? 
 Is overall architectural integrity a prerequisite for 

resilience? 
  If an architecture can’t easily be understood, how could 

one claim it is resilient? 
 How can architectural concepts for resilience be 

integrated without losing their integrity? 
  If the patterns and principles of resilience aren’t 

apparent in the system, how would one know they are 
still there? 
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Conclusion 

Resilience starts 
with strong concepts 

 
Resilience ends  

when conceptual integrity is lost 
 

Practice principled architecture! 
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