

Relations Between Resilience and Validation

Richard J. Doyle

Solar System Exploration Technology Program Jet Propulsion Laboratory California Institute of Technology

Keck Institute for Space Studies
Workshop on Resilience Space Systems

August 1, 2012

JPL Validation: NASA Needs and Challenges

- **Autonomy** is indicated as a system capability when operating in uncertain, inadequately modeled environments
- The inherent **uncertainty** hobbles the ability to conceive and execute a comprehensive test program prior to launch
- NASA continues to advance exploration into remote environments which are increasingly dynamic and poorly characterized at arrival time

JPL Validation of Autonomous Space Systems

OPEN QUESTIONS

Validation Methodologies:

Can future autonomous systems validation be addressed by extensions to existing approaches or are new validation concepts needed?

System Behavior Envelopes:

Is it possible to define boundary conditions for permissible system behavior, independent of operating context, which

- 1. guarantees that system safety is preserved?
- 2. mission plans can be validated against at acceptable computational cost?
- 3. allows behavior flexible enough to accomplish mission objectives?

Lifecycle View:

What is the role of model-based design, engineering and reasoning techniques in support of autonomous systems validation? Is a full-lifecycle approach (i.e., into operations) required?

State Space Complexity:

What are efficient search techniques that can provide reliable, if probabilistic, validations of proposed mission plans or sequences?

Flight Computing:

What flight computational support is needed to validate mission plans that are generated onboard and informed by operating conditions in the environment?

IMPACT

Future NASA Missions and Scenarios Enabled:

- Pinpoint and Safe Landing
- Proximity Operations at
 Primitive Bodies
- Fast Surface Mobility
- Surface Science During Traverse
- Agile (Time- and Knowledge-Limited) Science Operations

CURRENT APPROACH

NASA Space Systems are

models of the system and

· Using Monte-Carlo and other

sampling techniques

• By testing in high-fidelity testbeds

· Via simulations using physics-based

validated today

environment

JPL Resilience: Perspectives on Validation

• From Fault Protection

- Hard Core: Preserve core mission functionality no matter what
- Fault Diagnosis: Define faults to be departures from nominal behavior rather than through an enumerated list
- Behavior Envelopes: Same insight, a range of permissible system behaviors, defined independent of operating context

• From Software Verification

- Lifecycle View: Most powerful to specify behaviors formally, design out bugs (faults) early
- Equivalence Classes: Not all state distinctions are useful
- Smart Testing: Techniques for efficient sampling, most meaningful tests

• From Automated Planning

- Intent: Goal-based planning techniques provide formal guarantees that intent is preserved in automatically generated plans
- *Modeling*: Modeling the effects of actions on system and environment
- Projection: What-if? state prediction to verify that a proposed plan does not violate safety conditions