

ASTEROID RETURN MISSION (ARM)

2012 workshop report and ongoing study summary

Caltech Keck Institute for Space Studies (KISS)

National Research Council presentation 28 March 2013, Washington, DC

John Brophy (co-lead), NASA/Caltech-JPL Michael Busch, UCLA <u>Paul Dimotakis (co-lead), Caltech</u> Martin Elvis, Harvard-Smithsonian Center for Astrophysics <u>Louis Friedman (co-lead), The Planetary Society (Emeritus)</u> Robert Gershman, NASA/Caltech-JPL Michael Hicks, NASA/Caltech-JPL Tom Jones, Florida Institute of Human and Machine Cognition Shri Kulkarni, Caltech Dan Mazanek, NASA/LaRC Tom Prince, Caltech and JPL Nathan Strange, NASA/Caltech-JPL Marco Tantardini, The Planetary Society Adam Waszczak, Caltech Don Yeomans, NASA/Caltech-JPL

Asteroid-return mission (ARM) study — /

Phase 1: KISS Workshop on the feasibility of an asteroid-capture & return mission

- Completed in early 2012
- Study co-leads from Caltech, JPL, and The Planetary Society
- Broad invitation and participation (17 national/international organizations)
- April 2012 report on the Web

Objectives:

- Assess feasibility of robotic capture and return of a small near-Earth asteroid to a near-Earth orbit, using technology that can mature in this decade.
- Identify potential impacts on NASA and international space community plans for human exploration beyond low-Earth orbit.
- Identify benefits to NASA/aerospace and scientific communities, and to the general public.

Asteroid-return mission (ARM) study — *II*

Phase 2: Three-part follow-on and technical-development study

- October 2012 start, on-going
- Three main study components:
 - Observational campaign to search, and develop the technology to find and characterize suitable Near-Earth Asteroids (NEAs)
 - Development of the asteroid capture mechanism (not presented today)
 - In-space concentrating solar-thermal technology (not presented today)

A NASA-sponsored study recently began at JPL on this concept

 The KISS studies and this presentation are independent of the NASAsponsored JPL effort

Why bring an asteroid?

Create:

- An attractive destination for humans that is close-to/beyond the Moon
- A high-value and accessible place for human-exploration operations and experience
- A stepping stone into the Solar System and on a flexible path to Mars

Provide:

- Opportunity for human operational experience beyond the Moon
- Robotic spacecraft retrieval of valuable resources for human, robotic, and human-robotic synergistic exploration, and potential utilization of material already in space
- Science, technology, and engineering elements relevant to planetary defense

Within current/known constraints, it's a way for humans to reach an asteroid by the mid-2020s.

Bringing a (small) asteroid — Guidelines

Small size:

• $d_{\rm ast} \sim 5 - 7 \,\mathrm{m}$, $m_{\rm ast} \lesssim 750 \,\mathrm{tons} \pm ;$ low Earth-frame speed ($u_{ast,i} \leq 2.6 \text{ km/s}$)

Composition:

- Carbonaceous (C-type), density/strength of "dried mud"
- A rubble pile would break up
- Spacecraft trajectory/control

Stable destination orbit:

- E-M L₂, high lunar orbit, or other stable orbit
- These guidelines coincide with safety:
- Required trajectory coincides with a non-collision course
- Desired asteroid would burn-up high in Earth's atmosphere, should it enter
- Chelyabinsk reference: $d_{\text{Ch.i}} \sim 15 17 \text{ m}$, $m_{\text{Ch.i}} \simeq 11,000 \text{ tons}$; $u_{\rm Ch,i} \cong 19 \ \rm km/s$

ARM perspective

Apollo program returned ~ 400 kg of moon rocks, over six missions.

OSIRIS-REx mission plans to return ~ 0.06 kg of surface material from a B-type near-Earth asteroid (NEA) by 2023.

This study is evaluating the feasibility of returning an entire $\sim 7m$ NEA, with a mass $\sim 5 \times 10^5$ kg \pm , to either L2 or a high lunar orbit, by 2026.

Target asteroids — I

Target asteroids — II

- Target mass: $m_{\rm ast} \sim 500 \ {\rm tons} \pm$
- Max : $m_{\rm ast} \sim 1000$ tons
- Density uncertainty: most NEA densities are in the range $1.9 \lesssim \rho_{ast} \lesssim 3.9 \text{ g/cm}^3$
- For reference: $m_{\rm ISS} \sim 500$ tons

Prelim. spin rate: $\lesssim 10$ rph

Imparted $\Delta V \lesssim 0.2 \text{ km/s}$

- Max ΔV~2.6 km/s with lunar-g assist
- Depends on target-asteroid mass

Diameter	Asteroid Mass (kg)				Asteroid Mass (kg)			
(m)	1.9 g/cm³	2.8 g/cm³	3.8 g/cm³					
2.0	7,959	11,729	15,917					
2.5	15,544	22,907	31,089					
3.0	26,861	39,584	53,721					
3.5	42,654	62,858	85,307					
4.0	63,670	93,829	127,339					
4.5	90,655	133,596	181,309					
5.0	124,355	183,260	248,709					
5.5	165,516	243,918	331,032					
6.0	214,885	316,673	429,770					
6.5	273,207	402,621	546,415					
7.0	341,229	502,864	682,459					
7.5	419,697	618,501	839,394					
8.0	509,357	750,631	1,018,714					

Must identify enough candidates that meet requirements to plan a robust mission

For candidate asteroid, we need to know:

- Orbit, spectral type (C-type), size, shape, spin state, mass, and synodic period
- Uncertainties must be small enough to enable flight-system development

Table from Brophy et al. 2012 Asteroid Retrieval Feasibility. KISS final report. 8

Finding target asteroids — Current status

Present surveys:

- Relatively complete down to 1km
- Numerous detections down to 100m
- Poor knowledge of population down to 10m

Small number of plausible ARM candidates identified, e.g., 2009 BD, based on magnitude and orbit

- Present NEO detection rate: ~1000 /year
- Present ARM candidate rate: 2 3/year*
 - Discoveries are mostly serendipitous

Catalina Sky Survey

No "gold-plated" ARM candidates (suitable orbit, known size, spin, composition) presently known

Observations are mostly ground-based optical

Some space IR opportunities, e.g., NEOWISE, Spitzer

* V_{∞} test, size-type screening, spin, 2020-25 Earth close approach, ... ($\leq 1\%$ suitable for ARM).

Finding target asteroids - The challenge

Very dim: 10m object is 100's of times fainter than a 100m object (5 magnitudes)

Must be detected close to Earth

Large angular rate ("trailed" on images) , only visible for small number of nights (~ 10) for ground-based surveys

Detection requires large field of view and large apertures (typically > 1m)

2013 BS45 "flight accessible" Palomar Transient Factory (PTF)

Observational campaign — What's needed

Increase NEO discovery rate to $\sim 10/day$

Yield: \sim 5 good targets per year (right size, type, spin state, and orbital characteristics)

Rapid follow-on with a suite of facilities:

 Refined astrometry (orbit), multi-band photometry (colors), time-resolved photometry (light curves), spectroscopy (C-type or not), radar (size, density, spin), thermal IR (mass/area)

Decrease uncertainties

Time since discovery	Rate (#/day)	Follow-up observation
< 12 hrs	10	Astrometry
< 24 hrs	0.5	Additional astrometry, colors
< 48 hrs	0.2	Light curves
< 48 hrs	0.1	Spectroscopy
< 72 hrs	0.06	Radar

Table derived from Brophy *et al*. 2012 Asteroid Retrieval Feasibility. KISS final report. 11

Asteroid Capture and Return (ACR) spacecraft

Conceptual ACR spacecraft — II

Top:

 Solar arrays folded back to facilitate matching the asteroid spin state during the capture process

Bottom:

- Conceptual ACR flight system configuration before capturemechanism deployment
- Shows camera locations on solar array yokes used to verify proper deployment and subsequently aid in asteroid capture

Conceptual ACR spacecraft — III Master Equipment List (MEL)

WBS	Description	QTY	Unit Mass	Basic Mass	Growth	Growth	Predicted Mass
Number	FETCH - October 2011 (CD-2011-67)		(kg)	(kg)	(%)	(kg)	(kg)
06	FETCH - Asteroid Return Spacecraft			15027.6		511.6	15539.2
06.1	FETCH - Spacecraft Bus			15027.6		511.6	15539.2
06.1.1	Payloads			339.0	20.0%	67.8	406.8
06.1.1.a	Main Instruments			339.0	20.0%	67.8	406.8
06.1.2	Avionics			60.9	23.5%	14.3	75.2
06.1.2.a	Command & Data Handling (C&DH)			49.9	22.4%	11.2	61.1
06.1.2.b	Instrumentation & Wiring			11.0	28.2%	3.1	14.1
06.1.3	Communications and Tracking			61.8	24.4%	15.1	76.9
06.1.3.a	Ka-band Reflect Array			46.5	22.5%	10.5	57.0
06.1.3.d	X-band command and safing system			15.3	30.0%	4.6	19.9
06.1.4	Guidance, Navigation, and Control (GN&C)			20.5	16.5%	3.4	23.9
06.1.5	Electrical Power Subsystem			928.8	17.3%	160.8	1089.6
06.1.5.a	Solar Arrays			742.8	15.0%	111.4	854.2
06.1.5.b	Power Cable and Harness Subsystem (C and HS)			60.0	50.0%	30.0	90.0
06.1.5.c	Power Management & Distribution			104.6	15.5%	16.2	120.8
06.1.5.d	Battery System			21.4	15.0%	3.2	24.6
06.1.6	Thermal Control (Non-Propellant)			315.6	18.0%	56.8	372.4
06.1.6.a	Active Thermal Control			4.9	18.0%	0.9	5.7
06.1.6.b	Passive Thermal Control			239.4	18.0%	43.1	282.5
06.1.6.c	Semi-Passive Thermal Control			71.4	18.0%	12.8	84.2
06.1.7	Structures and Mechanisms			525.1	18.0%	94.5	619.7
06.1.7.a	Structures			386.8	18.0%	69.6	456.5
06.1.7.b	Mechanisms			138.3	18.0%	24.9	163.2
06.1.8	Propulsion System			906.7	10.9%	98.9	1005.6
06.1.8.a	Propulsion Hardware (EP)			114.0	14.1%	16.0	130.0
06.1.8.b	Propellant Management (EP)			465.3	11.9%	55.3	520.6
06.1.8.c	Power Processing Unit (PPU)			160.0	12.4%	19.8	179.8
06.1.8.d	Reaction Control System Hardware			167.4	4.6%	7.8	175.2
06.1.9	Propellant			11869.2	0.0%	0.0	11869.2
06.1.9.a	Propellant (EP)			10958.3	0.0%	0.0	10958.3
06.1.9.b	Pressurant			34.3	0.0%	0.0	34.3
06.1.9.c	RCS Propellant			876.6	0.0%	0.0	876.6

Solar Electric Propulsion

Envisaged ACR propulsion:

- Solar power: 40 kW (EOL), 50 kW (BOL)
- Hall thrusters: 4 thrusters, 10 kW each, operating in parallel
- Consistent with current NASA Solar Array System (SAS) contract objectives: 30 – 50 kW range
- Xenon mass: $m_{\rm Xe} \leq 13$ tons at launch
- Specific impulse: $I_{\rm sp} \sim 3000 {\rm s}$
- Thrust level: T = 1.5 N
 - Adequate for ≤ 1300 ton favorable-orbit asteroid return
- Assessed as the lowest-risk ARM-propulsion option today

Dawn, for reference:

- Solar power: 10 kW solar array (BOL, 1 AU)
- EP power: 2.5 kW
- Xenon mass: $m_{
 m Xe} \sim 0.425$ tons at launch
- SEP cost: \$1M/kW for the solar arrays

SEP is assessed to be an enabling technology for ARM

Image credit: <u>http://htx.pppl.gov</u>

Proof-of-concept trajectory — 2008 HU4

Heliocentric frame

• Indicated `tof' times begin with the completion of a ~ 2.2 year spiral-out Earth-escape phase.

Initial launch mass:

 $m_{\rm i} \sim 18 \ {\rm tons}$

Return mass: $m_{\rm r} \sim 1300$ tons

Mass amplification: $\frac{m_r}{m_i} > 70:1$

Total flight time: $\tau_f \sim 10$ years

- Return time fixed by asteroid orbit
- Target asteroid mass uncertainty translates into launch-mass and launch date (tof) uncertainty

Proof-of-concept trajectory — 1998 KY26

Mission options depend on target asteroid characteristics

Alternate: "Boulder" option

- Carbonaceous 1998 KY26
- Initial launch mass: 18 tons
- Return mass: 60 tons (~4 m)
- Whole 1998 KY26 too big to return
- Period/orbit: 500 days 0.98×1.5 AU
- Total flight time: 5.3 years
- Mass amplification: 3.5: 1

Identification of optimal targets and uncertainty reduction (mass, +) is crucial to ARM

Proof-of-concept trajectory — 2009 BD

Trajectory illustration for an alternate target

Geocentric/sun-up reference frame

- Earth-centered radialtangential-normal (RTN) frame
- No wonder the ancients had trouble

Mission description

Mission-destination options

Earth-Moon L2 or High Lunar Orbit

Orbit stability may favor latter

Halo orbit around L2 is also under study

Image credit: www.spudislunarresources.com

Lower figures from Brophy et al. 2012 Asteroid Retrieval Feasibility. KISS final report. 20

Planet safety

Multiple and independent safety layers and factors

- A 7 m diameter asteroid is too small to be considered a potentially hazardous asteroid (PHA)
 - Will not survive entry
- Low mass and approach velocity
 - Earth entry (initial) energy would be much lower than the Chelyabinsk meteor's:

$$E_{\rm e} = \frac{1}{2} m_{\rm e} U_{\rm e}^2 \lesssim 0.001 \times E_{\rm Ch,i}$$

- Mission-design trajectories guide the captured asteroid on a non-collision course with Earth
 - Failure and loss of control would leave a harmless asteroid in orbit around the sun
- Final orbit destinations chosen for its stability
 - L2, stable high lunar orbit, or other sufficiently stable orbit

Robotic-human synergy

ARM would be the first truly robotic precursor since Surveyor

Asteroid observations and composition are important to solar-system studies and to putative solar-system exploitation

- e.g., volatiles, metals
- ARM could enable new commercialization options

While ARM is not aimed at planetary defense, there are synergies

- Planning for planetary defense benefits from detailed knowledge of potentially hazardous asteroids
 - composition
 - structure
 - capture or deflection technologies

Robotic-human synergy — Milestones

2022

ARM launch

Asteroid capture

2017

2026

Emplacement near Moon Human mission(s) Scientific study Commercial options?

2025

International cooperation — I

Eventual human mission may well be international

ARM could be a/the first step in *The Global Exploration Strategy* (May 2007)

Robotic mission admits and invites many affordable cooperative possibilities

International cooperation — II

Robotic sample return is an international pursuit

- Stardust, OSIRIS-REx (NASA)
- Hayabusa 1 and 2 (JAXA)
- Marco Polo (ESA)

Solar Electric Propulsion is an international thrust

Options for international roles include:

- Companion observing spacecraft, e.g., IKAROS free-flying camera
- Payload participation, e.g., High Energy Neutron Detector
- Major subsystem, e.g., capture device

The NEO observing effort is also international

ARM — Summary and conclusions

- Creates a compelling, exciting, reachable target *beyond the Moon* for next step in exploration
- May provide the only possibility for humans to reach an asteroid by the mid-2020s
- Creates a meaningful human science, technology, and operations experience, with a significant public-appeal potential
- Advances robotic SEP to enable this mission concept
- Requires uncertainty reduction for ARM success
- Has technology tangencies with planetary defense
- Represents a new synergy between robotic and human missions for exploration, science, technology, and applications development
- Offers a platform and an opportunity that would host and extend international cooperation

Image credit: Rick Sternbach / Keck Institute for Space Studies 27

Back-up material

KISS ARM workshop (Phase-1) participants

Carl Allen, NASA/JSC David Baughman, Naval Postgraduate School Julie Bellerose, NASA ARC Bruce Betts, The Planetary Society John Brophy (co-lead), NASA/Caltech-JPL Mike Brown, Caltech Michael Busch, UCLA John Casani, NASA/Caltech-JPL Marcello Coradini, ESA Fred Culick (co-lead), Caltech John Dankanich, NASA/GRC Paul Dimotakis, Caltech Martin Elvis, Harvard-Smithsonian Center for Astrophysics Louis Friedman (co-lead), The Planetary Society Ian Garrick-Bethell, UCSC Robert Gershman, NASA/Caltech-JPL Tom Jones, Florida Institute for Human and Machine Cognition

Damon Landau, NASA/Caltech-JPL Chris Lewicki, ArkydAstronautics John Lewis, U. Arizona Pedro Llanos, USC Mark Lupisella, NASA GSFC Dan Mazanek, NASA/LaRC Prakhar Mehrotra, Caltech Joe Nuth, NASA/GSFC Kevin Parkin, NASA/ARC Rusty Schweickart, B612 Foundation Guru Singh, NASA/Caltech-JPL Nathan Strange, NASA/Caltech-JPL Marco Tantardini, The Planetary Society Brian Wilcox, NASA/Caltech-JPL Colin Williams, NASA/Caltech-JPL Willie Williams, NASA/Caltech-JSC Don Yeomans, NASA/Caltech-JPL

Conceptual ACR spacecraft — III

Top:

Stowed configuration

Bottom:

 Bottom view of the conceptual ACR spacecraft showing the five 10-kW Hall thrusters and the RCS thruster clusters.

Solar Electric Propulsion — II

Current vision is for EP system components to be qualified at the component level (as was done for the Dawn mission):

- Hall thrusters
- Power-processing units (PPUs)
- Thruster gimbals
- Solar arrays
- Solar-array drive assemblies
- ++

Flight system design is dominated by

- The size of the xenon tanks ($m_{\rm Xe} \leq 13$ tons)
- Solar-array accommodation in stowed configuration
- \bullet Thermal-system design to reject ${\sim}3~kW\,$ PPU waste heat

Trajectory parameters for 2008HU4 mission

Parameter	Value	Comments		
SEP power (EOL)	40 kW			
Specific impulse, I _{sp}	3000 s			
EP system efficiency	60%			
Spacecraft dry mass	5.5 t			
Launch: Atlas V 551-class				
Launch mass to LEO	18.8 t			
Spiral time	2.2 years			
Spiral Xe used	3.8 t	LEO to lupar gravity accist		
Spiral ∆V	6.6 km/s	LEO to lonar gravity assist		
Mass at Earth escape	15.0 t			
Transfer to the NEA				
Earth escape C3	2 km²/s²	Lunar gravity assist		
Heliocentric ΔV	2.8 km/s			
Flight time	1.7 years			
Xe used	1.4 t			
Arrival mass at NEA	13.6 t			
NEA stay time	90 days			
Assumed asteroid mass	≤ 1300 t			
Transfer to Earth-Moon System				
Departure mass: S/C + NEA	1313.6 t			
Heliocentric ΔV	0.17 km/s			
Flight time	6.o years			
Xe used	7.7 t			
Mass at lunar-gravity assist	1305.9 t			
Escape/capture C3	2 km²/s²	Lunar gravity assist		
Total Xe used	12.9 t			
Total flight time	10.2 years			

Data for Slide 15 (From Brophy et al. 2012 Asteroid Retrieval Feasibility. KISS final report). 32