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ABSTRACT

The natural composition of terrestrial ecosystems can be shaped by climate to take advantage of local envi-

ronmental conditions. Ecosystem functioning (e.g., interaction between photosynthesis and temperature) can also

acclimate to different climatological states. The combination of these two factors thus determines ecological–

climate interactions.Aglobal empiricalmap of the sensitivity of vegetation to climate is derived using the response

of satellite-observed greenness to interannual variations in temperature and precipitation. Mechanisms con-

straining ecosystem functioning are inferred by analyzing how the sensitivity of vegetation to climate varies across

climate space.Analysis yields empirical evidence formultiple physical andbiologicalmediators of the sensitivity of

vegetation to climate at large spatial scales. In hot and wet locations, vegetation is greener in warmer years despite

temperatures likely exceeding thermally optimum conditions. However, sunlight generally increases during

warmer years, suggesting that the increased stress from higher atmospheric water demand is offset by higher rates

of photosynthesis. The sensitivity of vegetation transitions in sign (greener when warmer or drier to greener when

cooler or wetter) along an emergent line in climate space with a slope of about 59mmyr21 8C21, twice as steep as

contours of aridity. Themismatch between these slopes is evidence at a global scale of the limitation of both water

supply due to inefficiencies in plant access to rainfall and plant physiological responses to atmospheric water

demand. This empirical pattern can provide a functional constraint for process-based models, helping to improve

predictions of the global-scale response of vegetation to a changing climate.

1. Introduction

The structure and productivity of vegetation across the

world is coupled to climate through environmental vari-

ables such as light, water, and temperature. Structure and

productivity of vegetation are also controls on the ter-

restrial carbon cycle (Friedlingstein et al. 2006), the ter-

restrial hydrological cycle (Schlesinger and Jasechko

2014; Jasechko et al. 2013), and the surface energy budget

(Ghimire et al. 2014). To understand how global vege-

tation will be altered under climate change, we must

understand how ecological–climate interaction operates

at large spatial scales and thus across global climate

gradients. In our work we have chosen mean annual

temperature and precipitation as climate gradients with

historical context in studying vegetation (e.g., Whittaker

1970), related to environmental resources important for

vegetation function and with strong variation across the

globe (Whittaker 1962; Kottek et al. 2006; Metzger et al.

2013). There is evidence that an important part of the way

that vegetation and climate interact is through changes in

phenology (Richardson et al. 2010, 2013). Though our

analysis aggregates across the seasonal cycle of vegeta-

tion and climate, we still observe these changes as in-

terannual variation in the annual means (e.g., a longer

growing season is a greener year).

Three common approaches have previously been used

to study how vegetation is controlled by the climate of

a region and to predict how it will change in the future:

1) climate-biome classification—treating the current

boundaries between biomes as determined by climate

(Peel et al. 2007; Kottek et al. 2006; Smith et al. 2002;
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Metzger et al. 2013); 2) simplified models of climate

constraint—based on physiological constraints on

net primary productivity (Churkina and Running

1998; Nemani et al. 2003; Jolly et al. 2005; Running

et al. 2004); and 3) global process-based models—

extending plant- or plot-scale research to global scales

through process-based numerical global models (Oleson

et al. 2010; Boisvenue and Running 2006; Levis 2010).

Our analysis serves to bridge the static geographical

observational (approach 1) and modeling approaches (ap-

proaches 2 and 3) by empirically quantifying the sensitivity

of vegetation to interannual variations in environmental

variables across the globe. By analyzing these sensitivities

across climate space we can diagnose how ecosystem

function varies across annual climate and hypothesize

mechanisms that could explain the observed pattern. We

define ecosystem function here as the integrated environ-

mental modulation of both plant-scale physiological (pho-

tosynthesis, respiration, transpiration, and hydraulic stress)

and population-scale ecological (demography, disturbance,

and competition) processes measured at a coarse spatial

scale (100km 3 100km). We do not discriminate grid

points based on plant type or human influence. Differences

in the growth cycle of vegetation that extend into the in-

terannual variations of the vegetation are treated as addi-

tional error in our analysis. Our study captures broad

patterns of ecosystem functioning across the global rangeof

two environmental conditions (mean annual temperature

and precipitation) and allows us to identify major climate

constraints on remotely sensed vegetation.

The effect of climate on vegetation is evident from ob-

servations of how vegetation is distributed across the globe

and is explicit in efforts to classify biomes and the use of

climate envelopes to predict the movement of biomes due

to climate change (Koven 2013; Rubel and Kottek 2010).

However, the way that ecosystem function varies across

climate, rather than just vegetation distribution, has not

been empirically investigated at a global scale. In this study

we combine the concept from climate classification that

climate shapes vegetation with our calculation of the in-

terannual sensitivity of vegetation to climate from re-

motely sensed vegetation and observations and reanalysis

of climate data. This allows us to identify emergent func-

tional constraints measured at the scales and resolutions

required to make global predictions about vegetation.

Analyzing the sensitivity of vegetation across climate space

expands on other work and enables us to find the un-

derlying pattern of ecosystem function across global cli-

mate gradients (Seddon et al. 2016; Wu et al. 2015). Here

our concept of binning across climate space is similar to the

commonpractice in climate science of calculating the zonal

mean of a variable, with latitude replaced with tempera-

ture and precipitation (see methods) (see Figs. 1 and 4 ).

2. Methods

a. Empirical sensitivity of vegetation to climate

We create an empirical estimate of the sensitivity of

vegetation to climate at global scales by combining the

satellite record of the normalized difference vegetation

index (NDVI) with globally gridded estimates of tem-

perature and precipitation. NDVI represents the longest

global time series available to study vegetation response

at a scale commensurate with global carbon cycling and

ecological–climate feedbacks (Pinzon and Tucker 2014).

NDVI has frequently been used to study temporal trends

in vegetated land cover (e.g., Chen et al. 2014) and has

been correlated with environmental variables across

biomes and regions to demonstrate the connection be-

tween the physical environment and surface greenness

(Wu et al. 2015; Zhou et al. 2003, 2001; Goward et al.

1991;Asner et al. 2000; Xu et al. 2014;Myneni et al. 2002).

Though a simple metric of vegetation, observations of

NDVI have the longest continuous global time series and

relates strongly to leaf area, fraction of absorbed photo-

synthetically available radiation, plant fluorescence, gross

primary productivity, and more advanced vegetation in-

dices (Myneni et al. 2002; Frankenberg et al. 2011;

Guanter et al. 2012; Glenn et al. 2008; Huete et al. 2002).

As the time series of MODIS enhanced vegetation index

(less saturation in dense vegetation) and targeted mea-

surements of solar-induced fluorescence (a remote ob-

servation thought to be proportional to GPP) concurrent

with climate observations grow longer we hope to be able

to further test many of the hypotheses presented in this

paper (Huete et al. 2002; Frankenberg et al. 2014, 2013,

2011; Guanter et al. 2012). In addition to remote sensing,

individual flux tower locations can make more direct

measurements of carbon and water fluxes (Baldocchi

2014). However, global products derived from these site-

level observations (e.g., Jung et al. 2011; Beer et al. 2010;

Xiao et al. 2011) also depend heavily on similar satellite

observations.

Here we use the globally observed NDVI as a direct

observation of greenness to create a metric of

ecological–climate interaction. Our analysis uses a

multilinear least squares regression between the in-

terannual percentage anomalies in NDVI %DNDVI and

the interannual time series of temperature T in 8C and

precipitation P in mmyr21 to determine the sensitivity

of greenness to climate at each vegetated grid point of

the globe (MATLAB function regress.m) [Eq. (1)]:

%D
NDVI

5Tb
TEMP

1Pb
PRECIP

1b
0
. (1)

We interpret the resulting bTEMP and bPRECIP for each

grid point as the sensitivity of vegetation to interannual
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variation of climate. The b terms are expressed as a

percent change in the mean NDVI from 1982 to 2012,

with units of %NDVI 8C21 and %NDVImm21, re-

spectively. Because of the assumed linear relationship

between climate and vegetation implicit in a multilinear

regression the coefficients bTEMP and bPRECIP can be

interpreted as linearized metrics of ecosystem function.

Ecosystem function is not necessarily linear in time or

space, but at the limit of the interannual variation and

the extent of each bin a linear fit is a useful approxi-

mation. In addition, we note that observations of

greenness relate most directly to processes and structure

of the vegetation canopy. A positive b shows positive

sensitivity of vegetation to climate (i.e., greener in a

warmer or wetter year), while a negative b shows neg-

ative sensitivity of vegetation to climate (i.e., greener

in a cooler or drier year).

We chose a simple linear model with two predictors in

order to learn about ecosystem–climate interactions

from the variation of a metric that reflects ecosystem–

climate interactions across climate space. Rather than

attempt to create the best linearmodel forNDVI at each

pixel on the map, our regression model serves to line-

arize the effect of both temperature and precipitation

consistently across the globe and simplify interpretation

of the results.

Collinearity between the predictor variables of the

linear regression (temperature and precipitation) is

present at various levels across the globe. However,

levels of correlation were not found to exceed com-

monly cited thresholds that would damage a linear

regression at most grid points, and experiments that

excluded high correlation values (.0.6) did not impact

the results of the analysis (see appendix, section d).

To examine the aggregated structure of bTEMP and

bPRECIP across climate space we assign each geospatial

point to a bin dictated by its climatological mean annual

temperature and precipitation (Figs. 1 and 2). The pat-

tern of aggregated bTEMP and bPRECIP across climate

contains information about climate and ecological–

climate interactions allowing us to hypothesize what

physiological mechanisms are responsible for how cli-

mate shapes each ecosystem. For example, bTEMP is

likely influenced by interannual variations in photo-

synthetic performance due to chemical rates (Berry and
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FIG. 2. Spatial points plotted in climate space of mean annual

temperature and mean annual precipitation. Nonvegetated grid

points (gray), vegetated grid points used in analysis (green), and

vegetated grid points where there were fewer than 10 in a bin

(brown).

FIG. 1. Sensitivity of vegetation to interannual variation in (a) temperature bTEMP and (b) precipitation bPRECIP

calculated from robust regressions for years 1997–2012. Shades of green show positive sensitivity [generally greener

vegetation when (a) warmer or (b) wetter]. Shades of brown show negative sensitivity [greener vegetation when

(a) cooler or (b) drier]. A map of (c) bTEMP and (d) bPRECIP.
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Bjorkman 1980), the water demand of the atmosphere

(Day 2000), and the increased costs of respiration at

higher temperatures (Sprugel et al. 1995). Alternatively,

bPRECIP will be influenced by a range of factors de-

pending on the climatology of a region—from in-

terannual variations in snowpack, water-supply-driven

hydrologic stress, and light limitation from thick cloud

cover during relatively high rainfall years. Based on the

sign of bTEMP and bPRECIP we quantify where transitions

occur between different ecological–climate interactions,

suggesting how the growing season, the balance between

the water demand of the atmosphere, water supply from

precipitation, and the effects of clouds on solar radiation

can each play a role in determining the ecosystem

function in different climates. We expect ecosystem

function to be determined by a myriad of time scales, so

that processes that operate at a subannual scale but

offset other processes will be less visible in our analysis.

This is a possible explanation for the number of bins in

the hot wet climates with high uncertainty, where less

seasonality provides less structure for leaf drop and

flushing. We note that both the analysis of the patterns

of weak bPRECIP and the uncertainty in both bTEMP and

bPRECIP suggest that there could be offsetting or less

coherent processes operating in these climates. Future

investigation into the seasonal structure of b may help

differentiate processes in areas of uncertainty.

b. Uncertainty

To quantify the uncertainty in the aggregate bins of

bTEMP and bPRECIP we use a Monte Carlo technique on

both the regression and the binning process, randomly

choosing half the points (i.e., half the years for regression

and half the points in a bin for averaging) and running the

calculation 10000 different times. This creates a re-

gression robust to outliers and characterizes the un-

certainty for b in time and climate space (Fig. 3). Our

approach is similar to the concept of bootstrapping a

distribution for uncertainty determination (Efron

1979). Additionally, we completed our analysis with

alternative datasets and found that the results are ro-

bust to the choice of dataset for both climate, using the

CRU TS3.21 gridded dataset (precipitation and tem-

perature; Jones and Harris 2013), and NDVI, using the

MODIS NDVI product (Solano et al. 2010). We do see

some differences between results using alternate datasets,

primarily while using the shorter MODIS NDVI data-

set. The analysis performed with MODIS NDVI has a

generally stronger b and shows some change in sign in

the warmer end of the transition zone for bTEMP. The

differences are partly due to the different time period

covered by MODIS NDVI, and the overall pattern is

qualitatively similar across different time periods, en-

vironmental data, and NDVI; differences are discussed

further in the appendix (Fig. A1).

c. Environmental data

Weperform the analysis on the 16-yr time series (1997–

2012) of 18 3 18latitude–longitude resolution observa-

tions where complete years of global observations of

NDVI from the third generation index NDVI3g (Pinzon

and Tucker 2014), near-surface air temperature from the

2-m ERA-Interim (Dee et al. 2011), and precipitation

from the Global Precipitation Climatology Project

(GPCP) (Adler et al. 2003) are concurrently available.

We used themonthly surface temperature estimates from

the 2-m ERA-Interim to represent the environmental

temperature experienced by vegetation (Dee et al. 2011).

We calculated a monthly precipitation dataset by sum-

ming daily precipitation from the GPCP 18 3 18latitude–
longitude resolution global dataset (Adler et al. 2003).

TheGPCP dataset is a combination of satellite and gauge

data interpolated across the globe available at 18 3 18
from 1996 to 2012, with data for a complete year starting

in 1997. Gridded datasets were interpolated to a common

spatial grid with the MATLAB function interp2.m.

FIG. 3. Combined temporal and spatial uncertainty for bins of (a) bTEMP and (b) bPRECIP. Dark colors show bins

with 95% confidence that average is greater than (green) or less than (brown) zero. Gradient of colors show range

of values greater than 75% certain.
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To calculate the regression of shortwave radiation and

temperature we use shortwave downward surface radia-

tion from the Surface Radiation Budget 3.1 (SRB 3.1) a

18 3 18latitude–longitude monthly dataset (see Fig. 7)

(Zhang et al. 2013). To create a radiatively based poten-

tial evapotranspiration (PET) estimate we use surface

net downward shortwave radiation from Clouds and the

Earth’s Radiant Energy System–Synoptic Radiative

Fluxes and Clouds (CERES-SYN) from 2001 to 2012

(Smith et al. 2011) [in appendix, see section b, Eq. (A1),

and Fig. A2b). Additional interannual environmental

data for temperature, precipitation, and PET from CRU

TS3.21 were used to ascertain the robustness of the

analysis to choice of environmental data (Jones and

Harris 2013). Additional datasets of PET from MODIS

and Global Land Data Assimilation System (GLDAS)

were compared to ascertain the certainty of the P/PET

estimate (Fig. A2a) (Mu et al. 2007; Feng and Fu 2013).

d. Remotely sensed vegetation

We chose NDVI as an observation of vegetation be-

cause of its global coverage and the availability of rela-

tively long time series. The NDVI3g time series is an

improved global NDVI dataset from the Advanced

Very High Resolution Radiometer (AVHRR) (Pinzon

andTucker 2014). The dataset has a 1/128 latitude–longitude
resolution and global coverage of 15-day global maximum

composites. Processing the datasets into maximum com-

posites reduces the effects from clouds and the satellite

viewing angle (Holben 1986). To create a common time

step we created monthly maximum composites from the

NDVI 15-day composites before calculating an annual

mean time series from 1983 to 2012. We interpolated the

data to 18 by 18 spatial resolution prior to analysis and

shortened the NDVI time series to 1997–2012 tomatch the

spatial scale and temporal range of the environmental data.

In this study we will interpret NDVI as a proxy for the

surface greenness and chloroplast density and use it to

calculate the interannual variation of vegetation. NDVI

is calculated by normalizing the difference between the

visible channel and near-infrared channel from the

AVHRR instruments by the sum of the channels.

Vegetation absorbs strongly in the visible band, dis-

tinguishing it from soils and other nonvegetated sur-

faces. Though not directly used here, NDVI also relates

to leaf area index and fraction of absorbed photosyn-

thetically active radiation (Myneni et al. 2002); thus we

consider the signal from NDVI as primarily related to

the leaves of vegetation and their potential to fix sun-

light into sugars. We assume here that the greening of

an ecosystem relative to the climatological mean sig-

nals that it is advantageous for the plants to deploy

more chloroplasts in an attempt to fix more carbon. On

an annual basis, we use an increase in greenness as a

metric for a positive sensitivity of vegetation to climate

that correlates with increased net primary production

(Myneni et al. 1995).

The launch of satellites with instruments that measure

additional spectral bands has allowed for the creation of

new vegetation indices and remote observations of veg-

etation. For example, observations from the Moderate

Resolution Imaging Spectroradiometer (launched in

1999) are used to generate an improved NDVI product

with less interference from water vapor as well as the

enhanced vegetation index (EVI), which uses a blue

measurement channel to reduce the effects of aerosols

(Solano et al. 2010). In general, bothNDVI andEVI from

MODIS have been shown to have larger seasonal am-

plitudes than NDVI from AVHRR, and EVI in partic-

ular does not saturate over high biomass areas as much as

NDVI has been shown to (Huete et al. 2002). There is

also the exciting new development of solar-induced

fluorescence as a more direct observation of the photo-

synthetic activity, and thus gross primary productivity

(GPP) (Frankenberg et al. 2014). ThoughNDVI has been

shown to relate to GPP, it is not completely proportional

and can show markedly different relationships between

different vegetation types (Frankenberg et al. 2011;

Guanter et al. 2012). Exploration of the measurement of

solar-induced fluorescence is just getting under way using

observations from Greenhouse Gases Observing Satellite

(GOSAT) andOrbiting Carbon Observatory 2 (OCO-2)

and do not yet have long enough time series to investigate

the interannual ecological–climate interactions.

e. Standardization

We chose to standardize the NDVI time series in or-

der to show the magnitude of the interannual change

compared to the average NDVI of the pixel [Eq. (2)]:

%D
NDVI

5
(NDVI2NDVI)

NDVI
, (2)

where %DNDVI is the interannual percent change of

NDVI, NDVI is the full time series (1983–2012), and

NDVI is the average of the full time series (1983–2012).

We chose not to alter the predictor variables of tem-

perature and precipitation so that our analysis

produced a metric that is consistent across the globe

(% 8C21 or%mm21), rather than being standardized

by a local effect (e.g., by environmental mean or in-

terannual standard deviation).

f. Removing nonvegetated terrestrial grid points

Our analysis considers only vegetated terrestrial grid

points by removing ocean and nonvegetated land grid
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points (Fig. 1). We removed ocean grid points using the

water mask included in the NDVI3g data files. We

determined a grid point to have a nonvegetated year

when the three months with maximum NDVI values

either had a minimum monthly value less than 0.1 or a

mean of the three months that was less than 0.3, as

adapted from Zhou et al. (2001) (Fig. 1). If a pixel was

nonvegetated in any of the 30 years between 1983 and

2012 it was removed from further analysis. This filtering

results in the removal of 3726 points of the possible

14 693 land points (25%) and can be visualized in Fig. 2.

Defining vegetated points in this way likely removes

some points that are vegetated at some point during the

time series. For example, removing points with vegeta-

tion recovering from bare ground (e.g., afforestation) or

where vegetation has been removed to bare ground

(e.g., deforestation, fire). Removing nonvegetated grid

points with this threshold also removes particularly low

NDVI. This removes the danger of dividing by zero in

the standardization and creating falsely high sensitivity

with no real ecological significance.

3. Results and discussion

a. Broad pattern of bTEMP and bPRECIP

Aggregated bTEMP and bPRECIP vary systematically

across global climate gradients (Figs. 4a,b). Large values

of b highlight areas where ecosystem greenness

generally responds strongly, and predictably, to in-

terannual changes in the climate (temperature or pre-

cipitation in this study), without being limited by other

resources required for greenness. The pattern of bTEMP

and bPRECIP bin aggregated in the climate space of mean

annual temperature and mean annual precipitation

explains a large portion of the pixel-by-pixel global

variation of bTEMP (26%) and bPRECIP (37%) (Figs. 4a,b).

Considering the diversity of factors influencing the sen-

sitivity of vegetation greenness to climate, the sub-

stantial amount of variance explained by the annual

climate of temperature and precipitation suggest mean

annual temperature and mean annual precipitation are

strong controls on ecosystem function. The systematic

variations of ecosystem functioning across mean annual

temperature and precipitation supports why these cli-

mate variables have traditionally been included in bio-

geographic explanations of biomes. The remaining

unexplained variance in bTEMP and bPRECIP may be due

to other climate variables (e.g., solar radiation or the

climate seasonality), local controls (such as soil structure

or successional history), unidentified stochastic pro-

cesses (such as storm damage or multiyear effects of

fire), strong gradients not represented by the coarse

aggregation, or measurement noise.

We observe inflections between positive and negative

bTEMP andbPRECIP extending as lines across a large range

of average climates (Figs. 4a,b). The linearity of the in-

flection lines suggest that ecosystem performance near

FIG. 4. Sensitivity of vegetation to interannual variation from 1997–2012 in (a) temperature bTEMP and

(b) precipitation bPRECIP. Each pixel displayed is the average value of all spatial points found in locations with

particular climatological mean annual temperature and mean annual precipitation. Shades of green (brown) show

positive (negative) sensitivity [greener vegetation when (a) warmer (cooler) or (b) wetter (drier)]. Blue contours in

(a) and (b) are ofP/PET derived from precipitation and shortwave radiation. The thick dashed black linemarks the

transition in sensitivity (bTEMP 5 0; bPRECIP 5 0). Boxes in (a) and (b) mark areas of particularly high bTEMP. Light

gray lines are for reference. A map of the average (c) bTEMP and (d) bPRECIP from each climate bin [as shown in

(a) and (b)] is shown reprojected onto a spatial map.
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b 5 0 is determined by the proportional amount of av-

erage precipitation relative to the average temperature

of a location. It is notable that both of the inflection lines

(bTEMP or bPRECIP 5 0) are approximately parallel (slope

of 62.5 to 59mmyr21 8C21), as they highlight different

aspects of ecosystem functioning, but offset by 7.98C
(mean annual temperature intercept of 1.18C for bTEMP

and26.88C for bPRECIP) (Figs. 4a,b). Near the inflection

line, the ecosystem performance is dependent on both

the average temperature and precipitation of a region.

Thus there is equivalence between temperature and

precipitation such that the performance cost of moving

to a 1.78C warmer climate region can be offset by an

additional 100mmyr21 of rainfall.

We hypothesize that the proportional relationship

between T and P is operating through the water balance

of the vegetation. The evidence for the relation of the

proportionality of T and P to water balance comes from

three arguments: dependence of atmospheric water de-

mand being a function of temperature, the presence of

the proportionality across multiple datasets (see ap-

pendix), and the presence of the mechanism in previous

work on plant hydraulics (McDowell 2011; Grier

and Running 1977). As temperature increases, the

temperature-driven increase in atmospheric demand for

water increases PET, causing hydrologic stress. Hydro-

logic stress can then be offset for plants if more water is

supplied through precipitation. Other aspects of the

environment that we do not account for have the po-

tential to exacerbate the annual imbalance (seasonality

of water demand and supply leading to runoff) and soil

water storage (helping balance offset of supply and de-

mand) and matric water potential of soils (resisting

vegetation in meeting the atmospheric demand)

(Borchert 1994). With these additional mechanisms in

consideration it is notable that though the proportional

relationship between T and P spans a large range of

climates, it is only observed as a proportional in a rela-

tively narrow transition zone. A similarly sloped line

between the max correlation of temperature and pre-

cipitation with gross primary productivity derived from

flux towers is evident (but not discussed) in a paper from

Jung et al. (2011, their Figs. 8c,f). Physiological experi-

ments also provide evidence of temperature influencing

plants through atmospheric water demand. When the

direct effects of temperature increases on vegetation are

isolated from the temperature-driven increase in vapor

pressure deficit, the vapor pressure effects are large

relative to the direct temperature effects at warmer

temperatures (Day 2000). From this we expect increases

in atmospheric water demand, in the form of vapor

pressure deficit, to be the dominant constraint on veg-

etation in places with relatively warm temperatures

(above 168C).
These observations of proportionality between tem-

perature and precipitation also qualitatively agree with

arguments that aridity (precipitation divided by poten-

tial evapotranspiration P/PET) is a critical climate var-

iable in shaping ecosystems (e.g., Budyko 1961; Lugo

et al. 1999). However, though contours ofP/PET plotted

across mean annual temperature and precipitation share

the sign of the inflection contours, they have a slope

(’ 30mmyr21 8C21) that is consistently half that of the

inflection lines that we observe (Figs. 4a,b and 5a). This

consistent line of transition and mismatch with P/PET is

evidence either that vegetation has access to a consistent

fraction of precipitation, less than the total precipitation,

across a wide range of climates or that vegetation is

more sensitive to changes in potential evapotranspira-

tion than can be explained by P/PET. The consistency of

the trade-off between temperature and precipitation for

both bPRECIP and bTEMP suggests a fundamental re-

lationship between plant physiology and climate. The

broad climate range (258 to 288C and mean annual

precipitation of 200 to 2000mmyr21) across which the

FIG. 5. Comparison of the sign of bTEMP and bPRECIP is shown in

(a) climatological mean annual temperature and mean annual

precipitation space and (b) projected onto a spatial map. Pixels are

colored light blue where both bTEMP and bPRECIP are positive

(warmer, wetter, greener), dark blue where bTEMP is positive but

bPRECIP negative (warmer, drier, greener), dark orange where

bTEMP negative and bPRECIP positive (colder, wetter, greener), and

light orange where both negative (colder, drier, greener). Light

gray lines in (a) are as described in Fig. 4 and black contours of

P/PET.

1 AUGUST 2017 QUET IN AND SWANN 5841



lines of inflection extend suggest that there is a strong

ability for ecosystems to adapt to their climate and ac-

count for the negative effects of increased PET (driven

by temperature) with increases in net photosynthesis

due to increased temperature (Berry and Bjorkman

1980). We find that the lower slope of P/PET isopleths

compared to those of bTEMP and bPRECIP is robust across

multiple datasets of potential evapotranspiration,

though the magnitudes of the pixel-by-pixel P/PET

values are uncertain owing to a wide spread between

datasets on the values of PET (see methods and

Fig. A2a).

In the following sections we further discuss hypothe-

ses for the mechanisms governing the climate–

vegetation interactions consistent with the observed

pattern of bTEMP and bPRECIP, particularly in regard to

the combination of the their signs. We discuss regions

where growing season length, water, and solar insolation

limit greenness.

b. Growing season limited: Temperature and snow
cover

Vegetation is greener during both warmer and drier

years in the coldest, driest vegetated areas of the globe,

as well as places with annual mean temperatures up to

relatively warm values of 158C where precipitation is

also high (1500mmyr21) (Fig. 5a). Places with these

climates are primarily spatially located at high latitudes

and experience a large seasonality in temperature and

sunlight. These climate conditions lead to a growing

season duration constrained by low temperatures and late

snow cover melt (Takala et al. 2011) (Figs. 4c,d and 5b).

We hypothesize that the main driver of variability

on annual greenness is the duration of the growing

season. Thus, we expect to see this mechanism acting

mainly in the months at either end of the growing season

rather than during months of peak greenness. In addi-

tion, these months are favored by atmospheric patterns

of blocking and ENSO variation that might suggest that

the climate in these months is also critical to setting the

length of the growing season (Lejenäs and Økland

1983). Indeed, the months with the most variance in

NDVI in cold (,258C) Northern Hemisphere locations

are June (beginning of growing season) and September

(end of growing season) (Fig. 6). In places with a mean

annual temperature below 258C there is very limited

variance of NDVI during winter (November to April),

including places with mean annual temperatures

below2108C where the variance drops to zero in winter

(Fig. 6). Months with proportionally more variance in

NDVI will most strongly influence the interannual

NDVI variance. Therefore, for these very cold regions

(,258C) the shoulder months of the growing season

primarily determine whether a year is greener or

browner.

We hypothesize that the mechanism limiting vegeta-

tion greenness in these areas characterized by cold

temperatures with both positive bTEMP and negative

bPRECIP is a combination of temperature and snow; years

with warmer average temperatures or drier years with

less snow correspond to greener years. Warmer tem-

peratures and an earlier snowmelt are likely to corre-

spond to more days during which conditions are

favorable for growth. This mechanism is consistent with

the hypothesis that the effects of the interannual varia-

tion in temperature and precipitation occur primarily in

the shoulder months. In warmer climates the variance of

NDVI becomes less concentrated in the shoulder

months, and in places with an average temperature

above 58C, the variance is more evenly spread across all

months (Fig. 6).

c. Water limited: Hot and dry

Nearly all of the negative values of bTEMP (greener in

cooler years) occur in places with mean annual tem-

peratures above 158C and precipitation less than

1000mmyr21 (Fig. 5a). The relatively large positive

values of bPRECIP suggest that greenness in drier years is

driven by hydrologic stress from limited water supply.

The combination of general greening during either

cooler or wetter years shows that hydrologic stress is

driven by both the supply of water and the atmospheric

demand for water as discussed above.

Locations falling in the hot dry region are primarily

clustered along the edges of nonvegetated deserts of the

North American Southwest, the Sahel, South Africa,

and Australia as well as northeast Brazil and the rain

shadow of the Chilean coastal range (Figs. 4c and 5d).

Nonvegetated points in deserts have been explicitly

FIG. 6. The variance for each month in NDVI divided by the

annual sum of monthly variance, shown across a range of annual

mean temperatures in the Northern Hemisphere. Months with

higher percent variance (dark green colors) contribute more

strongly to the annual mean variance. Contours show mean

monthly NDVI values.
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eliminated from this analysis, but plants living in these

places are presumably limited by water availability as

well. Because of the extensive spatial extent of the hot

dry region and deserts we hypothesize that low pre-

cipitation is the most common limitation on global

vegetation. In climate regions with 0.2 to 0.5 P/PET,

bTEMP and bPRECIP both weaken rapidly as the increased

water supply relieves the hydrologic stress from the

temperature-driven increase in atmospheric water de-

mand (Figs. 4a,b). As the climate becomes wetter, the

signs of both bTEMP and bPRECIP change, becoming

positive (greener when warmer) and negative (greener

when drier), respectively. The certainty of bPRECIP be-

comes limited in the hottest, wettest regions of the

globe, while bTEMP has stronger certainty (Fig. 3).

d. Energy limited: Interaction of clouds and sunlight

Areas with positive bTEMP and negative bPRECIP occur

where rainfall is above 2000mmyr21 and temperatures

are above 208C; these areas include most of the Amazon

basin and the Maritime Continent (Fig. 5). To be gen-

erally greener during warmer years at these high tem-

peratures, we hypothesize that plants must offset high

respiration costs associated with warmer years with even

larger increases in productivity (Fig. 4a). To complicate

matters, net photosynthesis measured experimentally at

the plant scale shows a decrease at high temperatures,

with a limit commonly seen around 308C, and this holds

true even for those plant species adapted to high tem-

peratures (optimum at 468 C) (Berry and Bjorkman

1980; Day 2000).

One pathway that could explain generally increased

greenness in warm years for these locations is for light

limitation on photosynthesis to be relieved by additional

insolation. Along a gradient of increasing P/PET, bTEMP

begins strongly negative (browner when warmer) at low

P/PET but increases rapidly as P/PET increases in this

relatively arid climate region (less than about 0.5)

(Fig. 7). The bTEMP transitions to positive values be-

tween P/PET values of 0.5 and 0.8 and then is generally

positive along with a positive bPRECIP above 0.8. Budyko

(1961) hypothesized that a transition in the surface

balance of water demand and water supply occurs from

water-limited evaporation conditions (more potential

evapotranspriation than water available) to energy

limited (more water available that insolation) as water

availability increases. The shape of these observations is

indicative of b responding to regions of water limitation

(, 0.5) and energy limitation (. 0.8).

We also note that interannual increases in tempera-

ture are concomitant with greater increases in in-

solation in wetter climate regions (sunnier, less clouds

when warmer) (Fig. 7). We observe approximately a

factor-of-2 change in the concomitant change of in-

solation with temperature (Wm22 8C21) between

P/PET values of 0.2 and 0.8 (Fig. 7). Increased water

availability changes the relationship of sunlight and

temperature, diverting more of the surface energy flux

through latent heat rather than sensible heat. Thus, the

same increase in photosynthetically active radiation

does not lead to the same increase in air temperature as

in drier regions. With a positive bTEMP and negative

bPRECIP it is apparent that any hydrologic stress from

the increase in water demand by a warmer atmosphere

is being offset by ample water supply and concurrent

increases in solar radiation, allowing for enhanced

vegetation greenness during warmer years even at

these high temperatures (Fig. 7).

The response of ecosystem function in hot, wet re-

gions to a changing climate may have strong implica-

tions for the terrestrial carbon cycle feedback on climate

change. These hot, wet climate regions tend to have very

large pools of aboveground carbon storage (Simard

et al. 2011; Saatchi et al. 2011) and encompass the

tropical rain forests in South America, Africa, and In-

donesia, as well as southeast China (Figs. 4c,d and 5b).

Our results suggest that concomitant increases in

shortwave radiation act as a mediator on the effect of

warming on greening in these hot, wet regions. We hy-

pothesize that these ecosystems would have a different

sensitivity to warming if it occurred without increases in

solar radiation (i.e., from greenhouse gasses). Ecosys-

tems would also likely have different sensitivity to a

multiyear decline in rainfall such as from an extended

drought as opposed to interannual variability. These

long-term changes would instead drive the whole eco-

system down the precipitation gradient out of the hot,

wet region toward positive bPRECIP below 2000mmyr21

(Figs. 4c,d).

FIG. 7. Variation of bTEMP (filled circles, colors as in Fig. 5; left

axis) and regression coefficient of interannual temperature and

shortwave radiation (green crosses; higher values show strong

positive coupling between temperature and shortwave radiation;

right axis) across places with different mean annual PET for lo-

cations with mean annual temperature greater than 208C.
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e. Climate change implications

Observations of b derived from greenness suggest

that ecosystem functioning depends on multiple phys-

ical aspects of climate, as well as the coordinated

changes among them. Predicting the future changes

of some of aspects of climate is much more difficult

(i.e., rainfall), which helps explain the uncertainty in

current predictions of the carbon cycle (Friedlingstein

et al. 2006). In addition, climate change may not main-

tain the same concomitant changes that we can observe

in interannual climate variations (e.g., temperature’s

damped response to sunlight in wetter climates).

Predictions based on any one variable alone (e.g.,

temperature) will not do as well where these concom-

itant changes are strong drivers, with ramifications for

predictions ranging from global climate sensitivity to

food supply (Friedlingstein et al. 2006; Battisti and

Naylor 2009). In particular, temperature is likely to

increase as a result of greenhouse gasses without an

associated change in shortwave radiation. The strong

implied effects of covariation of temperature with

shortwave radiation should motivate future research to

investigate the interconnections between climate vari-

ables under climate change and take into account their

location in climate space.

To aid in predictions of new climate regimes our

empirical characterization of present-day relationships

between ecosystem functioning and climate can also

serve as an observationally based constraints to improve

process-based models (Luo et al. 2012). Comparing our

linear metrics of the sensitivity of vegetation to climate

with model output probes the veracity of ecosystem–

climate interactions directly rather than the final results

of these interactions (e.g., sensitivity of vegetation to

temperature, rather than solely the temperature or

greenness of a particular region). This added constraint

complements and could possibly enhance other efforts

to improve the representation of processes within global

vegetation models. These observational constraints will

improve simulations not only under current conditions

but also under novel conditions by improving the func-

tional fidelity of the global vegetation model. Improved

models can then make better predictions despite the

differences between present-day observed variability

and anthropogenic-driven global warming of the next

century.
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APPENDIX

Uncertainty Analysis in Linear Regression, Binning,
and Datasets

To establish the uncertainty and robustness of the

analysis of ecological climate interaction across climate

space we performed four experiments: a Monte Carlo

bootstrap uncertainty estimate (section a), an experi-

ment using the shorter time series available from

MODIS NDVI (section b), an experiment with the

CRU TS3.21 dataset representing statistically upscaled

station observations of the environment (section c),

and an experiment omitting grid points with strong

interannual correlation between precipitation and

temperature (section d) (Figs. 3 and A1). Results

generally show low uncertainty in the sign of b outside

of the transition area and the hot, wet region, and they

are qualitatively consistent using MODIS NDVI and

CRU TS3.21 in place of NDVI3g and the combination

of ERA-Interim and GPCP, as well as when points of

high correlation are omitted. Methodology and specific

differences are discussed below.

a. Estimating uncertainty of b in time and climate
space

To estimate the uncertainty in the regression co-

efficient values b, we used a bootstrap Monte Carlo

technique, similar to method 2 discussed in Efron

(1979), in combination with the regression at each grid

point (Fig. 1). We performed 10 000 regressions by

randomly drawing 8-yr time series from the total 16-yr

dataset. The mean of these 10 000 b values is reported as

the sensitivity of vegetation (Fig. 4). The resulting dis-

tributions of sensitivity are combined with the un-

certainties from the bins to determine 95% bounds on

the uncertainty (Fig. 3).

To aggregate patterns of the b across climate space,

each geospatial point was assigned a bin dictated by its

climatological mean annual temperature and precipi-

tation. There are 178 bins, each 1.88C by 186.5mmyr21;

bins with fewer than 10 points were ignored (Figs. 2 and

1a,b). We include all 10 000 vegetation sensitivities
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calculated as part of the temporal Monte Carlo for all

spatial points falling in a given bin. We do a further

Monte Carlo sampling of this set by selecting randomly

from the 10 000-point temporal distribution of b for

half of the spatial points in each bin. From this selec-

tion we calculate an area-weighted mean for that bin

10 000 times resulting in a distribution of bin-mean b.

The area-weighted mean of the distribution of b within

a bin is then reported as the b for that bin, and the range

is used to determine the 95% bounds as the error bars

(Fig. 3).

The uncertainty analysis includes the contributions of

both the uncertainty in the regression (i.e., the consis-

tency of the ecological climate interaction across time)

and the uncertainty in each bin (i.e., the consistency in

the ecological–climate interaction in any particular cli-

mate bin). The uncertainty in sign for bTEMP is strongest

in the hot, wet climates and along the sloping transitions

FIG. A1. Binned sensitivity of vegetation to annually averaged (row 1),(a), (b),(c) temperature bTEMP, (row 2),(d),(e),(f) precipitation

bPRECIP calculated from robust regressions, and (row 3),(g),(h),(i) the combinations of the signs of the regression coefficients. Coloring as

in Fig. 3 and Fig. 5. Columns represent the same analysis with either (column 1),(a),(d),(g) different environmental data (CRU TS3.21),

(column 2),(b),(e),(h) different observations of NDVI (MODIS) over a different time period of 2003–11, or (column 3)(c),(f),(i) the same

data as the original but over the different time period of 2003–11 as in (column 2).
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from positive bTEMP to negative bTEMP. In comparison,

the uncertainty in bPRECIP also shows the sloping tran-

sition line and is particularly low for climate regions

below precipitation values of 1500mmyr21. Again, the

hot, wet climate regions are particularly uncertain. The

aggregated patterns of uncertainty show similar patterns

to those of the mean b values, suggesting that the con-

sistency of b generally follows the strength of b. This

uncertainty appears to be a function of climate as well.

The differences in the analysis due to using different

vegetation indices and environmental datasets also pri-

marily occur in regions where the temporal and binning

uncertainty are highest. This correlation is to be ex-

pected if the patterns of the analysis done with different

datasets are approximately the same as the original

analysis, as the sign and amplitude are more likely to

change where the analysis was uncertain in the

first place.

b. Analysis with MODIS NDVI

As noted above there are multiple other remotely

sensed vegetation indices, as well as multiple corrections

to theNDVI vegetation index (Hilker et al. 2014; Solano

et al. 2010; Holben 1986). To test the robustness of the

observed patterns to our choice in NDVI product, we

compared the newer MODIS NDVI observations that

are available from 2003 to 2015 with the overlapping

portion (2003–11) of NDVI3g with complete years.

Qualitatively these analyses are very similar to those of

the original analysis using NDVI3g from 1997 to 2012

(Fig. A1, right two columns). Hot, dry climates have

negative bTEMP and positive bPRECIP (greening when

cooler and wetter), and the cold regions show positive

bTEMP and negative bPRECIP (greening when warmer and

drier); there is evidence of the sloped optimums (b5 0),

and the hot, wet climates show a mix of both bTEMP and

bPRECIP but are predominantly greener when warmer

and drier. We observe a few notable differences. First,

the MODIS NDVI results have generally stronger sen-

sitivities (Figs. A1b,e). This result follows from the ob-

servations that the seasonal cycle of MODIS NDVI is

stronger than that of NDVI3g, which would lead us to

expect that the interannual variation would also be

stronger (Huete et al. 2002). Second, the cold region

shows many more points where there is a greening

during wetter years (Figs. A1b,e). However, the location

of the change from generally negative bPRECIP to posi-

tive bPRECIP is preserved, particularly in drier climates.

This is not entirely the case for bTEMP; at lower rain

levels there is a clear transition zone, but at the wetter/

warmer end of this transition zone the region of greening

when cooler has expanded. It is not completely un-

expected that there would be instability in this region, as

it is the least certain in our original analysis, and the

2003–11 time window shows some encroachment of

greener when cooler and wetter even in the shortened

NDVI3g analysis (Figs. 4a,b and Figs. A1c,f,i; cf. second

and third columns).

c. Analysis with other environmental data

To ascertain the robustness of the analysis to choice of

environmental datasets we used alternate environmen-

tal data from CRU TS3.21. We performed the re-

gressions over the same time period 1997–2012 with

CRU TS3.21 temperature and precipitation and

NDVI3g vegetation index (Figs. A1a,d,g). CRU TS3.21

was chosen because it uses a different method to derive

global gridded datasets of temperature and pre-

cipitation. Rather than a reanalysis product (such as

ERA-Interim) or a combination of gauge and remote

sensing observations (such as GPCP), CRU TS3.21 is a

statistically upscaled gridded product based on station

data. Station coverage is relatively dense over North

America and Europe and particularly sparse over

tropical South America and Africa. Our results using

CRU TS3.21 show that the analysis using a different

environmental dataset is qualitatively similar and continues

to support our results and discussion (cf. Figs. 4a,b and

5a with Figs. A1a,d,g).

d. Temperature and precipitation correlation

The predictor variables of interannual temperature

and precipitation used in the linear regression are

often collinear in nature. Where there is particularly

strong correlation, there is the possibility that a mul-

tilinear regression will not do a good job of separating

the variation explained by each predictor variable. To

address this concern we ran a test by omitting points

from our analysis that have higher correlation co-

efficients (.0.6 correlation). We find nearly no change

to our analysis and no changes to our overall in-

terpretation and discussion of the results. We de-

termine that pixels with high correlations between

temperature and precipitation do not appear to have

undue influence on the aggregated pattern discussed

in the manuscript.

Our omission of pixels with correlations above 0.6

(36% shared variance) is conservative per the statisti-

cal literature where it is suggested that correlation co-

efficients of up to 0.77 (60% shared variance) can be

linearly separated and even some suggestion that

values as high as a correlation coefficient of 0.89 (80%

shared variance) are acceptable (O’Brien 2007). Only a

small portion of the global area analyzed exceeds a

correlation coefficient between precipitation and tem-

perature of 0.6.
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e. Variability across aridity datasets

Vegetation health and productivity is driven by a

balance of the supply and demand of water in many

environments. Aridity is a measurement of the dryness

of an environment that takes both the supply of water

(precipitation P) and the demand for water [potential

evapotranspiration (PET)] into account. Potential

evapotranspiration can be calculated in a number of

ways based on net radiation [Eq. (2)] (Budyko 1961),

empirical temperature-based relationships (CRU

TS3.21), and a more complete Penman–Monteith ap-

proach that treats the complete surface energy budget

(MODIS PET and GLDAS PET) (Smith et al. 2011;

Jones and Harris 2013; Mu et al. 2007; Feng and Fu

2013). We investigated a number of observationally

derived products of PET to use in combination with

precipitation from GPCP to create an aridity index of

P/PET. We found that the absolute values of aridity

(P/PET) were highly variable, owing to different esti-

mates of PET, but that the slopes of the contours binned

across precipitation and temperature were relatively

stable (Fig. A2a). From this we conclude that our com-

parisons of the slope of the optimal lines (b 5 0) with

contours ofP/PET are robust but that the actual values of

P/PET at which changes in ecological–climate interaction

change are unknown owing to uncertain global estimates

of PET (Fig. 7). For our comparison we chose the sim-

plest of the PET estimates that depends only on the net

downward shortwave radiation (Budyko 1961). Using

observations from CERES-SYN, we calculated PET in

order to calculate P/PET to compare with b (Fig. A2b):

PET5
S
w

L
y
r
w

(A1)

PET is calculated as the amount of water that the energy

available in the net downward shortwave radiation Sw

could possibly evaporate by dividing it by the latent heat

of vapor Ly and the density of water rw.
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