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Amplifiers are ubiquitous in electronics and play a fundamental role in a wide

range of scientific measurements. From a user’s perspective, an ideal ampli-

fier has very low noise, operates over a broad frequency range, and has a high

dynamic range - it is capable of handling strong signals with little distortion.

Unfortunately, it is difficult to obtain all of these characteristics simultaneously.

For example, modern transistor amplifiers offer multi-octave bandwidths and ex-

cellent dynamic range. However, their noise remains far above the fundamental

limit set by the uncertainty principle of quantum mechanics.[1] Parametric am-

plifiers, which predate transistor amplifiers and are widely used in optics, exploit

a nonlinear response to transfer power from a strong pump tone to a weak signal.

If the nonlinearity is purely reactive, i.e. nondissipative, in theory the amplifier

noise can reach the quantum-mechanical limit.[2] Indeed, microwave frequency

superconducting Josephson parametric amplifiers[3, 4] do approach the quantum

limit, but generally are narrow band and have very limited dynamic range. In

this paper, we describe a superconducting parametric amplifier that overcomes

these limitations. The amplifier is very simple, consisting only of a patterned

metal film on a dielectric substrate, and relies on the nonlinear kinetic induc-

tance of a superconducting transmission line. We measure gain extending over

2 GHz on either side of an 11.56 GHz pump tone, and we place an upper limit

1

ar
X

iv
:1

20
1.

23
92

v1
  [

co
nd

-m
at

.s
up

r-
co

n]
  1

1 
Ja

n 
20

12



on the added noise of the amplifier of 3.4 photons at 9.4 GHz. Furthermore,

the dynamic range is very large, comparable to microwave transistor amplifiers,

and the concept can be applied throughout the microwave, millimeter-wave and

submillimeter-wave bands.

Over the past decade, the combination of high-performance superconducting microres-

onators and low-noise, microwave frequency cryogenic transistor amplifier readouts has

proven to be particularly powerful for a wide range of applications including photon detec-

tion and quantum information experiments.[5–7] These developments have generated strong

renewed interest in superconducting amplifiers that achieve even lower readout noise. [8–12].

Most of these devices are parametric amplifiers that make use of the nonlinear inductance

of the Josephson junction, which is almost ideally reactive with little dissipation below the

critical current Ic. As a result, Josephson paramps can be exquisitely sensitive, approaching

the standard quantum limit of half a photon ~ω/2 of added noise power per unit bandwidth

in the standard case when both quadratures of a signal at frequency ω are amplified equally.

Here ~ is Planck’s constant divided by 2π. Even less noise is possible in situations when

only one quadrature is amplified.[1]. In comparison, the added noise of cryogenic transistor

amplifiers is typically 10-20 times the quantum limit.[13] However, the dynamic range of

Josephson paramps is regulated by the Josephson energy EJ = ~Ic/4πe (here e is the elec-

tron charge) to values that are far lower than for transistor amplifiers. Furthermore, as in

optical parametric oscillators in which light passes many times through a nonlinear medium,

previous superconducting paramps generally use resonant circuits to enhance the effective

nonlinearity in order to achieve high gain. Consequently, amplification is achieved over a

narrow instantaneous frequency range, typically of order a few MHz, vs. ∼ 10 GHz for

transistor amplifiers. This results in a relatively slow response time that can hinder observa-

tion of time-dependent phenomena, e.g. quantum jumps.[14] Also, as with superconducting

quantum interference devices (SQUIDs), the combination of a limited dynamic range and a

limited bandwidth results in a low Shannon information capacity and limits the utility of
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Josephson paramps for multiplexed readout of detector arrays.[15]

Instead of using a resonator, the optical or electrical path may be unfolded into a long

nonlinear transmission line or waveguide. This results in a traveling wave paramp[16, 17]

which has a very broad intrinsic bandwidth. However, a low-dissipation medium that is

sufficiently nonlinear over a realizable length must be found. At visible and infrared wave-

lengths, these requirements are met in optical fibers[18] and silicon waveguides[19] through

the nonlinear process of four-wave mixing (FWM) that results from the intensity depen-

dence of the refractive index, i.e. the Kerr effect. Fiber paramps achieve high (> 60 dB)

gain[18] and single-quadrature versions have exhibited noise levels below the standard quan-

tum limit.[20] An analogous microwave device using a metamaterial of numerous Josephson

junctions embedded in a transmission line[21, 22] has been proposed and investigated, but

this design has not yet resulted in a practical amplifier.

Like a Josephson junction, a thin superconducting wire behaves as a nondissipative in-

ductor for currents below a critical current Ic. The critical current is therefore an obvious

scale for nonlinear behavior in both junctions and wires, although Ic for a wire is typically

orders of magnitude larger than for a junction. Indeed, the phenomenological Ginzburg-

Landau theory and the microscopic BCS theory[23, 24] both predict the nonlinearity of the

kinetic inductance of superconductors. In practice this nonlinearity is usually weak, though

resonant paramps based on this effect have been proposed and investigated[25, 26]. Here we

show that the use of a high-resistivity superconductor such as TiN[27] or NbTiN results in

a kinetic inductance nonlinearity that is sufficient to allow parametric gain in a practical,

realizable traveling wave geometry.

The current variation of the kinetic inductance of a superconducting wire is expected to

be quadratic to lowest order, i.e. Lk(I) ≈ Lk(0) [1 + (I/I∗)2], just as in the case of Josephson

junctions. The Mattis Bardeen theory gives Lk(0) = ~Rn/π∆ for a wire with normal state

resistance Rn and superconducting gap parameter ∆ and whose transverse dimensions are

small enough so that the current distribution is approximately uniform. I∗ is comparable to
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Ic, and can be roughly estimated by equating the kinetic energy of the Cooper pairs LkI
2/2

to the pairing energy Ep = 2N0∆2V , where N0 is the density of states at the Fermi level and

V is the volume. The resulting expression for I2
∗ is proportional to 1/Rn. The phase velocity

of the transmission line is vph = 1/
√
LC ≈ vph(0)(1− αI2/2I2

∗ ), where L and C are the total

inductance and capacitance per unit length, and α is the ratio of kinetic inductance to total

inductance. The magnitude of the Kerr effect in the line is therefore proportional to α/I2
∗

and is enhanced in films with high normal state resistivity ρn due both to large α and small

I∗. The TiN and NbTiN films produced in our laboratory have ρn ≈ 100 µΩ cm, nearly three

orders of magnitude larger than for typical aluminum films, and have very low microwave

loss in the superconducting state.[27] The high resistivity also results in a large penetration

depth,[7] in the range 2 − 20µm depending on thickness (20-50 nm typically) and critical

temperature Tc, so a uniform current density is readily achieved in our micron-scale wires

patterned by optical lithography.

The nonlinear kinetic inductance is illustrated in fig. 1, which shows the phase shift of a

microwave tone passing through an NbTiN transmission line as a function of the DC current

flowing through it. In fact, such a current-controlled phase shifter has been previously pro-

posed[28] but not successfully demonstrated due to an increase in the microwave dissipation

with DC current. Similar dissipative behavior has also been noted in superconducting thin

film resonators (see supplementary information). In contrast, no increase in dissipation was

observed for the range of phase shifts displayed in fig. 1. Also, provided that the tempera-

ture is kept well below the critical temperature Tc, our TiN[27] and NbTiN microresonators

remain nondissipative for microwave currents sufficiently strong to develop a significant re-

active nonlinearity. These results are described in the supplementary information.

The parametric gain produced through FWM can be calculated using coupled mode

equations that have been developed to describe optical fiber paramps (see supplementary

information). In general, FWM may involve two separate pump tones, but we consider only

the degenerate case where the pump frequencies are equal. The equations then describe the
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interaction of the pump at angular frequency ωp = 2πfp, signal at ωs, and the generated

idler tone at ωi = 2ωp − ωs. For a dispersionless line, which is a good approximation for

a uniform superconducting transmission line at frequencies well below the gap frequency

2∆/h, the signal and idler gains for fs ≈ fp are Gs = 1 + (∆θ)2 and Gi = (∆θ)2, where

∆θ is the nonlinear phase shift, in radians, of the pump tone due to its own AC current.

Fig. 1 shows that phase shifts of several radians can be achieved in response to a DC current.

Comparable phase shifts can also be achieved in response to RF currents, as described in

the supplementary information. Dispersion, due either to material or waveguide properties,

controls the phase slippage between the waves as they propagate, which in turn determines

whether the signal is amplified or deamplified. The linear dispersion ∆β = β(ωS) + β(ωI)−

2β(ωP ) involves a difference of the propagation constants β(ω) for small-amplitude waves at

the signal, idler and pump frequencies, and vanishes for a dispersionless line obeying β(ω) =

ω/c̄. The coupled-mode equations predict that maximum gain occurs when ∆β = −2∆θ/L

because this value of linear dispersion compensates for the phase slippage that arises from

the nonlinearity. Furthermore, the resulting gain Gs = exp (2∆θ)/4 varies exponentially

with line length L rather than quadratically[18, 29]. For much larger or smaller values of

∆β, loss of phase match yields low gain.

In fact, some amount of dispersion is necessary, because a dispersionless Kerr medium

leads to generation of a shock front when ∆θ & 1, preventing significant parametric gain.[30]

Indeed, a superconducting line generates the third harmonic 3fp due to the voltage term

I2dI/dt arising from the nonlinear inductance. This is the first step in the formation of

the shock front: once the 3fp harmonic is present, other harmonics can be generated. This

problem is dealt with in a simple manner using dispersion engineering, leading to the device

shown in fig. 1. Periodic perturbations are included in the coplanar waveguide (CPW)

transmission line with a separation corresponding to half of a wavelength at frequency fper,

with fper slightly larger than 3fp. Much like an electronic or photonic bandgap, this results

in a stop band centered at fper that includes 3fp, blocking harmonic generation. We also
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slightly alter every third perturbation, resulting in weak stop bands around fper/3 and 2fper/3

(fig. 1c). This gives rise to localized dispersion features near these frequencies; fine-tuning

of the pump frequency fp in the vicinity of these features allows the optimum value of ∆β

to be achieved for a wide range of signal frequencies. For the device shown in fig. 1, the stop

bands occur at at multiples of fper/3 ≈ 5.9 GHz, not far from the design value of 5 GHz. We

chose to operate the the device with the pump tuned near 2fper/3 ≈ 11.8 GHz because this

dispersion feature was stronger; note that a strong stop band also occurs at 3 × 11.8 GHz,

which prevents formation of pump harmonics.

We measured the gain of the amplifier with the pump tuned to 11.56 GHz using the circuit

shown in fig. 2, excluding the bandpass filter. The gain increases with pump power until

a critical pump power is reached, which we identify with the onset of nonlinear dissipation

in the line. Significant gain is observed over a frequency range of approximately 8 GHz to

14 GHz, with a notch around the pump frequency (fig. 3). A theoretical gain curve (fig. 3,

top), generated by integrating the coupled mode equations and including a model of the

loaded line dispersion (see supplementary info), is in rough agreement with the average gain.

However, there is a fine-scale variation of the gain that is approximately periodic with signal

frequency, and this gain ripple increases with pump power and has a divergent behavior

around the critical pump power. The average gain at the higher pump power shown is

10 dB, with several peaks extending above 20 dB. From the frequency spacing, it is clear

that the gain ripple is due to standing waves created by reflections at the ends of the line. The

reflections are probably caused by the non-optimal on-chip tapered impedance transformers,

or possibly the wirebond transitions or other components near the device.

For the purpose of measuring the noise of the paramp, we chose a signal frequency of

fs = 9.37 GHz, close to a gain peak . The output power of the amplifier chain was measured

in a narrow band around fs using a spectrum analyzer. A cryogenic switch (fig. 2) was used

to calibrate the system. The added noise power per unit bandwidth of the high electron

mobility transistor (HEMT) at 4.1 K was measured to be AHEMT = 16.1, in photon units
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(~ω), by switching between between 50 Ω resistors on the 4.1 K and base temperature stages

of the dilution refrigerator (switch positions 2 and 3). With the paramp connected to the

HEMT (position 1), we make measurements with the pump tone on and off (fig. 4). Because

the gain peak shifts to lower frequency when the pump is applied, we slightly reduce the signal

frequency to remain at the peak. Since the transmission of the measurement system should

remain constant over this small frequency interval, the increase in the output signal power

gives the gain of the paramp, GPA = 18.6 dB. It is evident that the paramp is considerably

less noisy than the HEMT, because the signal-to-noise ratio improves by 7.8 dB with the

pump turned on (fig. 4). The paramp noise may be quantitatively determined from the ratio

R = (non − n0)/(noff − n0), where non and noff are the measured noise levels with pump

on and off, and n0 is the noise from sources after the HEMT and is found by turning off

the HEMT. However, with the paramp connected to the HEMT (switch position 1) and no

pump applied, we find that the noise floor is slightly higher than with the HEMT connected

to the cold load. This increase in the system added noise is Asys = 2.9. We have not yet

determined the origin of this noise and therefore we do not know the gain Gsys this noise

experiences when the pump is turned on. As a result, when we calculate the noise added by

the paramp,

APA =
R− 1

G′PA

AH +
R−Gsys

G′PA

Asys +
R

2G′PA

− 1

2
(1)

we obtain a range of values 1.1 ≤ APA ≤ 3.4, corresponding to 1 ≤ Gsys ≤ G′PA. Here G′PA

accounts for the isolator loss (fig. 2).

To confirm the noise measurement, we used a variable-temperature 50 Ω resistor con-

nected to the paramp input through a 3 dB hybrid coupler (fig. 4). The slope of the linear

relationship between output noise and resistor temperature calibrates the gain of the system,

and extrapolating this relationship to zero resistor temperature gives the added noise of the

amplifier plus any additional input noise. If we assume that only vacuum noise ~ω/2 is

present at the input, the added noise of the paramp is 3.3± 0.2 photons, in agreement with

the previous measurement.
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The dynamic range of the paramp was investigated when operating with 18 dB signal gain

under the same conditions as used for the noise measurement. The system gain compressed

by 1 dB for a signal power at the paramp input of around 100 pW. However, measurements

made with the pump turned off show that the HEMT, rather than the paramp, is reponsible

for this gain compression. Theoretically, saturation of the paramp occurs when the amplified

signal power becomes a significant fraction of the pump power, around 100 µW for this device,

so that the pump becomes depleted.

In summary, we have demonstrated a simple and robust superconducting amplifier with

very low noise, wide bandwidth, and high dynamic range. In fact, given the extremely low

dissipation of the superconductors used,[27] it seems likely that the amplifier is operating

very near the quantum limit and that the added noise is due to imperfections of the present

measurement system. For example, the image frequency fI = 13.75 GHz is outside the

bandwidth of our isolator, so noise from the HEMT may leak back toward the paramp at

that frequency and contribute to noise at fs. Straightforward design improvements should

allow high (> 20 dB) gain to be achieved over an octave of instantaneous bandwidth. Peri-

odic loading structures can readily be designed for operating frequencies in the microwave,

millimeter-wave, and submillimeter-wave bands, potentially approaching the gap frequency

of the superconducting film (2∆/h ≈ 1.4 THz for NbTiN). The lower frequency limit is

determined only by the length of transmission line that can be fabricated. By applying a

DC current bias, the amplifier can also be operated in a three-wave mixing mode, where the

pump is at twice the average of the signal and idler frequencies. More generally, we hope that

our demonstration will serve as a clear illustration of the remarkable nonlinear properties

of highly resistive superconductors and will stimulate development of a much broader set of

applications, just as was the case for nonlinear optics.
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Figure Legends

Figure 1 Phase response to DC current and amplifier design. a, This plot illustrates

the nonlinearity of the kinetic inductance. A NbTiN coplanar waveguide (CPW) transmis-

sion line (shown in panel b) was measured in transmission using a microwave network ana-

lyzer. The total phase length was 670 radians at 4 GHz. Using bias tees, a DC current was

passed down the center conductor. The resulting microwave phase shift (measured at 4 GHz)

displays a quadratic dependence with current. No comparable effect occurred when adjust-

ing the voltage of the center strip relative to the ground planes. This shows that the kinetic

inductance has a nonlinear behavior that is well described by δLkin ∝ I2. b, A picture of the

amplifier (left) which consists of a 0.8 m length of NbTiN CPW line arranged in a double

spiral to reduce resonances due to coupling between adjacent lines. The thickness of the line

is 35 nm and the center conductor and gap widths are 1 µm. At the input and output of

the line, the CPW geometry tapers from center strip and gap widths of 30 µm and 5 µm to

adiabatically transform the characteristic impedance of the line from close to 50 Ω to 300 Ω.

The line is periodically loaded by widening a short section after every length D = 877µm

as shown on the right, producing the stop band and dispersion characteristics. The phase

velocity on the line is 0.1 c due to its large kinetic inductance. c, An illustration of the the

effect of the periodic loading pattern (shown schematically) on the transmission of an infinite

transmission line. The gray regions represent stop bands; waves in these frequency ranges

decay evanescently. The graph represents the difference between the propagation constant

of the line and linear (∝ ω) dispersion. As the fractional width of the third stop band is

much larger than the first, the pump can be placed at a propagating frequency while 3ωp is

blocked.

Figure 2 Circuit for paramp gain and noise measurements. The pump tone is pro-

duced by a low phase noise synthesizer (< 150 dBc at 10 MHz offset), amplified to a suitable

level and filtered using a copper cavity mode bandpass filter. After a splitter, the pump

tone is attenuated at 4K and filtered using a commercial combline filter with a bandwidth
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of 200 MHz around 11.56 GHz. This bandpass filter is used for the noise measurements,

and provides greater than 70 dB of attenuation for noise on the pump line at the signal

frequencies of interest. The other output of the splitter is phase and amplitude adjusted and

used to null the pump tone that passes through the paramp and would otherwise saturate

the 4 K HEMT amplifier. The signal tone is generated either with another synthesizer or

a vector network analyzer. Its level is reduced by warm and cold attenuators and coupled

to the paramp input using a 20 dB directional coupler on the base temperature stage of the

dilution refrigerator. A cryogenic isolator is used after the paramp to absorb noise radiated

toward the paramp by the HEMT post-amplification stage. The noise of the paramp and

HEMT is measured with the help of a cryogenic switch after the isolator that can connect the

HEMT amplifier to either the paramp or 50 Ω loads at the base temperature and 4 K stages.

The loss of the isolator was measured to be 0.8 dB. The switch has negligible loss. After

further amplification at room temperature, the signal is measured using either a spectrum

analyzer or the network analyzer. The diagram does not include coax line losses. All coaxes

below 4 K are superconducting.

Figure 3 Measured and calculated gain. (Top) This plot shows a gain profile calculated

using the coupled mode equations for FWM including the dispersion of the device determined

using a transmission line model of the periodic loading structure. A parameter quantifying

the nonlinearity of the line and the frequency shift of the dispersion curve due to the cross

phase modulation from the pump tone were adjusted for a reasonable match to the data.

(Second and third) these plots show the measured ratio of pump on over pump off trans-

mission (gray lines) for two pump powers (-8.0 and -9.4 dBm at the input of the paramp).

The blue lines are the measured data smoothed by averaging over 60 MHz. The large peak

at 11.9 GHz is an artifact arising from the shift to lower frequency of the transmission dip

produced by the periodic loading. (bottom) The spacing between the gain ripples, shown on

an expanded scale, corresponds to the electrical length of the NbTiN transmission line.

Figure 4 Noise compared with the HEMT amplifier . (Left) Increase in signal to
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noise ratio of a weak microwave tone applied to the input of the paramp. With the pump

off (green) the noise floor is limited by the HEMT amplifier. With the pump on (blue) the

signal gain is 18.6 dB and signal noise ratio has increased by 7.8 dB. The red lines are a fit

to the spectrum analyzer’s response to a monochromatic signal. The pump on data were

taken with fs = 9.3672 GHz, while the pump off data used fs = 9.3845 GHz. (Right) Noise

referred to the input of the paramp (blue) and the HEMT amplifier (green) in photon units

versus the calibrator temperature. The circuit configuration for this measurement is shown

in the inset. The 50 Ω resistor is mounted on a temperature controlled stage connected to

the mixing chamber and terminates a 0.85 mm diameter NbTi coax line. The noise signal

is added to the pump at the input of the paramp using a 3 dB hybrid coupler. The total

loss between the resistor and the paramp input was 4.1± 0.5 dB, where we have taken the

insertion loss of hybrid to lie between the room temperature measured value of 1 dB and

zero. An isolator is used between the noise calibrator and the hybrid to avoid heating from

reflected pump power.
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Resonator Measurements of the nonlinear response of TiN and NbTiN films

The dissipation of a system can be sensitively measured using resonant techniques. Here

we present measurements of microresonators made from thin TiN and NbTiN films, driven

with input powers large enough to cause the resonances to exhibit nonlinear behavior due

to the current dependence of the kinetic inductance. Our aim is to examine the relationship

between the nonlinear inductance and dissipation in these films.

The measurements were performed on resonators with a “lumped element” geometry

described in fig. S1, which were weakly coupled capacitively to a finite width ground plane

CPW feedline. The quality factor Qc describing the strength of the feedline coupling was

6 × 105, and the internal quality factors describing resonator losses, Qi were 5 × 106 and

2.5 × 106 for the TiN and NbTiN resonators, respectively. The devices were cooled in a

dilution refrigerator to below 100 mK.

The resonance curves were measured with a homodyne detection circuit (fig. S1). The

driving signal was produced by a synthesizer and an I/Q demoduator was used to measure

the complex transmission coefficient. Use of this configuration rather than a vector network

analyzer allowed the excitation frequency to be swept in both the upward and downward

directions by supplying a low–frequency (< 1 Hz) triangle–wave voltage to the frequency

modulation input of the synthesizer. It has been found in studies[1] of similar nonlinear su-
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Figure S1: Microresonator geometry and circuit. (left) The lumped element
resonator and microwave feedline (TRL) were patterned from single TiN and NbTiN films
on high resistivity silicon substrates. The capacitor (IDC) of the resonator consists of planar
interdigital electrodes, and the inductor (L) is a 5 µm wide, 50 nm thick trace arranged in a
(magnetically) noninductive spiral. The transition temperatures of the TiN and NbTiN films
were 4K and 14K respectively. (center) A homodyne detector circuit measures the complex
transmission of the resonator. The equivalent circuit of the resonator is a capacitively coupled
tank circuit that shunts the readout transmission line, producing a dip in the transmission
at the resonance frequency of 2.2 GHz (right).

perconducting resonators that at large enough drive power the system undergoes a bifurca-

tion beyond which the resonance curves exhibit discontinuous jumps and become hysteretic.

This behavior occurs whenever the nonlinear dissipation is sufficiently low[1]. Beyond the bi-

furcation power, the resonance is more thoroughly explored by downward frequency sweeps,

as these track the resonance frequency as it is shifted downward by the nonlinearity. For

this reason, we concentrate here on the downward sweeping direction.

The data in fig. S2 show the highly distorted resonance curves that result when the

resonator is driven well beyond the bifurcation. The behavior can be modeled using a current

dependent shift of the resonance frequency δfr(I) and internal quality factor Qi(I)[1], where

I is the microwave current circulating in the resonator. In terms of these functions, the

feedline transmission is

S21(f, I) = 1− Qt(I)/Qc

1 + 2iQt(I)[f0 + δfr(I)− f ]/f0

, (S1)

where Q−1
r (I) = Q−1

i (I)+Q−1
c . The internal current can be expressed in terms of the feedline
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Figure S2: This figure illustrates the effect of increasing microwave readout power on the
resonance line shape of the 2.2 GHz lumped-element TiN resonator. As the power is in-
creased, the microwave current in the resonator causes the inductance to increase, shifting
the frequency downwards; this is classic ”soft-spring” Duffing oscillator behavior. Inter-
estingly, as indicated by the constant depth of the resonance, dissipation of the resonator
changes very little over a wide range of drive power – in fact, the change in resistance of the
TiN is < 2 × 10−4 smaller than the change in its reactance in this range. Feedline powers
are -46 to -84 dBm in steps of -2 dBm. The current in the resonator is ∼ 1 mA at the onset
of dissipation.

drive power Pf and S21 as

I2 = 2Qc
|1− S21|2

Z0

Pf , (S2)

where Z0 is the impedance of the resonator. The implicit set of equations S1 and S2 can be

solved for S21. For a downward frequency sweep, at a particular feedline power, the minimum

of |S21| corresponds to the shifted resonance frequency fr(I) = f0 + δfr(I). At these points

S21 is real and is equal to 1−Qr(I)/Qc. For upward sweeps past the bifurcation power, S21

never becomes real, as the system jumps discontinuously over the resonance condition.

Over a range of drive power the resonance dips shown in fig. S2 have approximately

constant depth, hence the resonator dissipation remains unchanged in this range. In fact,

no additional dissipation is observed up to a drive power which is approximately 100 times

the bifurcation power. On further increasing the feedline power, the resonance dip does

abruptly become much shallower, indicating a sudden onset of dissipation. Estimation of
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Figure S3: Frequency shift versus change in loss of TiN and NbTiN resonators at the
shifted resonance frequencies for various values of the feedline power. For TiN, Q−1 remains
unchanged to the measurement precision until δfres/fres(0) = 2.6× 10−4, which corresponds
to a internal circulating current of ≈ 1 mA. Beyond that point the loss increases roughly
linearly with the frequency shift with a slope δQ−1/(δf/f) consistent with an increase in
the quasiparticle density in the film. The NbTiN resonator shows a reduced range with
no dissipation increase and a more complicated behavior at larger nonlinearity. For both
resonators the loss remains less than 10−5 over the range studied.

the resonator microwave current at that point gives I ≈ 1 mA.

Figure fig. S3 shows the change in the resonator loss δQ−1 versus resonance frequency

shift for the data of fig. S2 and for similar measurements on an NbTiN resonator. For both

materials there is a range of drive power over which there is no increase the dissipation, to

within the measurement accuracy, while significant resonance frequency shifts are observed.

This behavior is in stark contrast to the NbN films used by Abdo et al. [2] and other

studies[3–5] which show strong increases in dissipation as the power is increased.

The magnitude of the nonlinearity reached before dissipation is observed is ξ = δfres/fres =

2.6× 10−4 for the TiN resonator. If we wish to operate the parametric amplifier below this

limit, the value of ξ would translate into a requirement on the transmission line length.

Expressing the gain using the approximation fs ≈ fp and assuming perfect phase match

∆β = −2∆θ/L, we expect Gs = exp (2ξθ)/4, where θ = 2πL/λg is the phase length in ra-
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dians of the transmission line with physical length L and guide wavelength λg[6]. For 20 dB

gain, we would need θ ≈ 3ξ−1, a readily realizable length for frequencies in the GHz range,

especially given that the phase velocity on the transmission line may be ≤ 0.1c. Note that

the amplifier may also be operated at higher nonlinearity, as long as the increase in nonlinear

dissipation remains small, as it does over the entire range of the data in the figure. In ad-

dition to the loss of the superconductor, the tones propagating on the transmission line will

be attenuated by losses including dielectric loss, which is dominated by two-level systems[7]

at very low temperature. This loss will be completely negligible because ξQi � 1, as can be

seen by noting that Qi > 106 for resonators made from TiN[8] or NbTiN[9].

Coupled mode equations for predicting the gain of the paramp

The wave equation for the current I in the transmission line is

∂2I

∂z2
− ∂

∂t

[
L(I)C ∂I

∂t

]
= 0 , (S3)

where L(I) and C are the inductance and capacitance per unit length, and the current

dependence of the inductance is given by

L(I) = L0

(
1 +

I2

I2
∗

)
. (S4)

As in the standard treatment of waves interacting in nonlinear optical media, we express the

total current in terms of a number of frequency components,

I =
1

2

(∑

n

An(z)ei(knz−ωnt) + c.c.

)
, (S5)

where the slowly varying complex mode amplitudes An satisfy

∣∣∣∣
d2An
dz2

∣∣∣∣�
∣∣∣∣kn

dAn
dz

∣∣∣∣ . (S6)

The I2dI/dt nonlinearity connects combinations of four frequencies. Hence a general dis-

cussion of parametric amplification in a Kerr medium includes four frequencies in the sum

in eqn. S5: two pump tones at ωp1 and ωp2, a weak signal at ωs and a generated idler at
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ωi = ωp1 +ωp2−ωs. Here we specialize to the case of degenerate four-wave mixing, ωp1 = ωp2.

Evolution of the mode amplitudes Ap, As and Ai inside the transmission line is then governed

by three coupled mode equations[10],

dAp
dz

=
ikp
I ′2∗

[(
|Ap|2 + 2|As|2 + 2|Ai|2

)
Ap + 2AsAiA

∗
pe
i∆βz

]
,

dAs
dz

=
iks
I ′2∗

[(
|As|2 + 2|Ai|2 + 2|Ap|2

)
As + A∗iA

2
pe
−i∆βz] ,

dAi
dz

=
iki
I ′2∗

[(
|Ai|2 + 2|As|2 + 2|Ap|2

)
Ai + A∗sA

2
pe
−i∆βz] , (S7)

where the low-power propagation mismatch ∆β = ks + ki − 2kp, and I ′2∗ = 2I2
∗/α.

The number of equations in S7 could be increased if we were to include mixing processes

involving, for example, the pump harmonics (2n+ 1)ωp, n = 1, 2 . . ., and combinations such

as 2nωp+ωs, etc. We assume here that these higher frequency tones either fall in a stop band

of the stepped impedance structure and do not propagate, or at least that the dispersion

engineering of the line creates enough phase mismatch at those frequencies that they do not

interact coherently with the lower frequency modes.

For ωs ≈ ωp and using the undepleted pump approximation, d|Ap|/dz = 0, eqns. S7 yield

analytical results for the signal power gain Gs and idler conversion efficiency Gi, which may

be expressed as[6, 11]

Gs =
|As(L)|2
|As(0)|2 = 1 +

[
kp|Ap|2
I ′2∗ g

sinh gL

]2

(S8)

Gi = Gs − 1, (S9)

with parametric gain coefficient g = −∆β(∆β/4 + kp|Ap|2/I ′2∗ ). In the case of no dispersion,

∆β = 0, g = 0 implies that

Gs = 1 +

(
kp|Ap|2
I ′2∗

)
= 1 + (∆θ)2, (S10)

where ∆θ is the phase shift of the pump tone. The gain in this case is quadratic in the length

of the transmission line, rather than exponential, owing to a phase mismatch that results

from the nonlinearity (as can be seen from the factors of 2 in eqn. S7, the phase shifts of the

6



0 0.5 1 1.5 2

0

5

10

15

20

f
signal

 / f
pump

G
ai

n 
(d

B
)

 

 

∆θ = 1 radian
3
10

0 0.5 1 1.5 2

0

5

10

15

20

f
signal

 / f
pump

G
ai

n 
(d

B
)

 

 

∆β L / ∆θ = 0
−0.5
−2

Figure S4: Calculation of the paramp gain using the coupled mode equations S7 for (left:)
no dispersion and various values of the nonlinear phase shift ∆θ; and (right:) fixed ∆θ =
3 radians and various values of ∆β.

signal and idler tones are twice that of the pump tone.) If ∆β = −kp|Ap|2/I ′2∗ , the linear

phase mismatch compensates that due to the nonlinearity and the exponential gain regime

is accessed with

Gs ≈
1

4
exp (2∆θ). (S11)

The kinetic inductance paramp described in this paper may operate well outside the

frequency range where ωs ≈ ωp is valid, so to predict the gain and bandwidth we integrate

eqns. S7 numerically. The results of that calculation for several idealized cases are shown

in fig. S4. Here we assume that the frequencies other than those of the pump, signal and

idler are blocked by engineered stop bands or large dispersion at those frequencies. For

simplicity, we ignore the narrow stop band near the pump that would be associated with

introducing dispersion at that frequency. We also neglect the detailed form of the dispersion

near ωp, taking ∆β to be either a negative constant or zero. The calculation results uphold

the very broadband nature of the amplifier. In the case of no dispersion, the 3-dB bandwidth

narrows, but remains above 25% for 20 dB peak gain. For optimal ∆β, 20 dB peak gain may

be realized with a phase shift of only 3 radians, and the 3-dB bandwidth is greater than an

octave.
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Device fabrication

The NbTiN itself is deposited by dc reactive magnetron- sputtering from a 3 inch diameter

NbTi metal target. The films are sputtered using constant current (.55-.8A) in a background

of Argon and Nitrogen. The process pressure is maintained at 5 mTorr using a downstream

conductance controller and the flow rates are set using mass flow controllers. The deposition

system is a load-locked UHV system with a base pressure ∼ 5× 10−10 Torr. The TiN films

are deposited following the procedures discussed in [8].
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