

Next-Generation Ground-Based Planetary Radar

Arecibo Observatory Colloquium

Jet Propulsion Laboratory California Institute of Technology

Joseph Lazio

Thanks to M. Sanchez-Net, K. Andrews, M. Brozovic, B. Butler, B. Campbell, L. D'Addario, E. Murphy, M. Taylor, V. Vilnrotter, M. Judd, KISS Study Participants

Outline

Me, as summer student, with Arecibo dish in the background!

- Scientific Motivation
- Radar Arrays
 - Technical Aside
 - Radio Astronomy Arrays
 - Radar Astronomy Arrays
 - Calibration of Radar Astronomy Arrays
- Looking toward the Future

Scale of the Solar System

Relative sizes of planetary orbits known for centuries

Radar provided absolute sizes of planetary orbits at precision needed for interplanetary navigation

Precision measurements from DSIF [DSN] radar measurements Reduced uncertainty to about 400 km (~ 0.0003%)

Planetary Radar Accomplishments

- Discovered Venus retrograde rotation (1962)
- Probing the surfaces of asteroids (1976)
- First radar returns from Titan (1989-1993), suggestive of icy surface but with potential liquids
- Anomalous reflections from Mercury (1991), indicative of polar ice

Magellan radar image of Venus (NASA/Caltech/JPL)

Cassini radar image of Titan (NASA/JPL/USGS)

Science Case - Near-Earth Asteroids and Planetary Defense

- Radar delivers size, rotation, shape, density, surface features, precise orbit, nongravitational forces, presence of satellites, mass, ...
 - Science: Decipher the record in primitive bodies of epochs and processes not obtainable elsewhere
 - Robotic missions: Navigation, orbit planning, observations
 - Planetary defense: Precise orbit determination, size, shape for hazard assessment

Radar Contributions to Space Missions

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/icarus

Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations

Michael C. Nolan^{a,*}, Christopher Magri^b, Ellen S. Howell^a, Lance A.M. Benner^c, Jon D. Giorgini^c, Carl W. Hergenrother^d, R. Scott Hudson^e, Dante S. Lauretta^d, Jean-Luc Margot^f, Steven J. Ostro^{c,1}, Daniel J. Scheeres^g

^a Arecibo Observatory, HC 3 Box 53995, Arecibo, PR 00612, USA
^b University of Maine at Farmington, 173 High St, Preble Hall, Farmington, ME 04938, USA
^c Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
^d Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
^e Washington State University, Tri-Cities, Richland, WA 99354, USA
^f Department of Earth and Space Sciences, University of California, Los Angeles, CA 90295, USA
[§] University of Colorado at Boulder, 429 UCB, Boulder, CO 80309-0429, USA

International Radar Assets

Goldstone Solar System Radar (DSN) 70 m antenna, 450 kW transmitter, 4 cm wavelength (X band)

Arecibo (NAIC)

Green Bank Telescope (GBO) 100 m antenna, no transmitter (yet!)

Canberra DSS-43 (DSN) 70 m antenna, 80 kW transmitter, 4 cm wavelength (C band) + Australia Telescope Compact Array

W. M. Keck Institute for Space Studies Next-Generation Planetary Radar Study

Arecibo Observatory

Science Case – Next-Generation Planetary Radar

Driving use cases identified at KISS Workshop

- Near-Earth Asteroids and Planetary Defense
- Venus
- Outer Solar System satellites
 - **Other potential targets**
 - Mini-moons
 - Interstellar objects
 - Earth Trojans

• ••

Venus / Sif Mons

Future Aside: Modular, Solid-State Amplifiers

1 inch

State of the Art: high-power amplification via klystrons (vacuum tubes)

- Planetary radar klystrons have challenging power densities and manufacturing tolerances (~ 1 MW/mm²)
 - Only 50% efficient
 - Even small beam deviations lead to potentially damaging heat dissipation

Future Aside: Modular, Solid-State Amplifiers

64 kW SPCA Assembly

1 kW Spatial Power Combining Amplifier (SPCA)

- Klystrons have challenging power densities and manufacturing tolerances (~ 1 MW/mm²)
- Solid-state amplifiers
 - Modular / scalable, a.k.a. graceful degradation
 - Reliable: Device lifetimes > 100 yr in optimal operating conditions
 - Used in commercial and military communications/radar systems
- Technology Development
 - JPL: 16 × 80 W (commercial)
 MMICs, 90% combining efficiency
 → 1 kW output @ 8.56 GHz
 - JAXA: 30 kW solid-state system transmitter
 - Need to scale to ~ 1 MW

How Do Telescopes Work?

Exercise for the reader:

Consider a parabolic surface.

Show that initially parallel light rays, all traveling at the speed of light *c*, reach a common point, *the focus*, at the same time no matter where they reflect from the surface of the reflector.

Extra credit: Repeat for a spherical reflector such as Arecibo and show that the focus is a line.

Aperture Synthesis

- 1. Record signals at individual antennas
- 2. Bring them together "at the same time" (coherently)
- 3. Then ...

Interferometry or Aperture Synthesis

- 1. Record signals at individual antennas
- 2. Bring them together "at the same time" (coherently)
- 3. Then synthesize aperture!

a.k.a. build a telescope that's mostly holes!

Aperture Synthesis

Interferometry or Aperture Synthesis

The 1974 Nobel Prize in Physics was awarded jointly to Sir Martin Ryle and Antony Hewish "for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars."

Arrays are generally approach being adopted for current and future radio telescopes

- LOFAR
- MWA
- HERA
- MeerKAT
- ASKAP
- SKA1-Mid and SKA1-Low
- ngVLA

Next-Generation Planetary Radar

How Do Telescopes Work?

Reciprocity

Antennas work equally well as transmitters or receivers

e.g., "feed illuminates subreflector" for radio telescope for which no transmitter exists

Radar!

Radar Array

By reciprocity, in principle, adding transmitters and injecting appropriate delays can enable phased transmissions

Arecibo Observatory

Radar Array

Need ephemeris to compensate for relative velocities of antennas

τ

Planetary Radar

Huygens–Fresnel principle

Radar transmitter transmits toward target ...

Target reflects, a.k.a. re-transmits, radar signal.

Received Power (a.k.a. Radar Equation, and Tyranny of)

Radar transmitter transmits toward target ...

Target reflects, a.k.a. re-transmits, radar signal.

Received Power (a.k.a. Radar Equation)

Monolithic single dish

- *P*_{TX} limited by high-power transmitter and amplifier engineering
- G_{TX} limited by size of antenna
- Many single point failures

* G = 1 (= 0 dBi) for isotropic radiator $G > 10^7$ (70 dBi) for Goldstone, Arecibo

Received Power (a.k.a. Radar Equation)

Monolithic single dish

- *P*_{TX} limited by high-power transmitter and amplifier engineering
- G_{TX} limited by size of antenna
- Many single point failures

Array of N antennas

- $P_{TX} = N p_{TX}$, with p_{TX} smaller and much more feasible
- $G_{TX} = N g_{TX} \propto N a_{eff} \propto N d^2$, more feasible to manufacture
- More graceful degradation
- Is same array used to transmit and receive? G_{TX} = G_{RX}

Arrays of Transmitting Antennas

Loop Canyon test site

Vilnrotter et al.; D'Addario et al. Next-Generation Planetary Radar

Three-Antenna Uplink Array Demonstration

EPOXI Spacecraft

Vilnrotter et al.

Arecibo Observatory

Uplink Array Demonstration: 3 antennas vs. 1 antenna

Delay-Doppler Improvement

2007 WV4 Image using 3-antenna Uplink Array

2007 WV4 Image using Single Antenna (DSS-26)

DSS24 + DSS-25 + DSS-26 (20 kW) (20 kW) (80 kW)

DSS-26 (80 kW)

... but only 750 m resolution

Next-Generation Planetary Radar

Radio Astronomy Array Calibration

Phase: $\phi = 2\pi v \tau_g$ Need phase errors << 1 Synthetic aperture needs to be "smooth"

Radio Astronomy Array Calibration

Observe point source (reference emitter) at infinity **Deviation from** point source used to derive phase corrections

τ

Next-Generation Planetary Radar

Radar Array Calibration

Need electric fields in phase at infinity Need reference receiver

τ

Arecibo Observatory

Arrays of Transmitting Antennas

Calibration, calibration, calibration

- Use Moon as reflector
- Use receiver on spacecraft
- Use terrestrial receiver

Loop Canyon test site

Vilnrotter et al.; D'Addario et al.

Radar Array Calibration

- Use Moon as reflector
- Use receiver on spacecraft

Arrays of Transmitting Antennas

Place reference receiver on tower

Loop Canyon test site

D'Addario et al.

Arecibo Observatory

Arrays of Transmitting Antennas

Place reference receiver on tower

Loop Canyon test site

Science Case – Next-Generation Planetary Radar

Driving use cases identified at KISS Workshop

- Near-Earth Asteroids and Planetary Defense
- Venus
- Outer Solar System satellites
 - **Other potential targets**
 - Mini-moons
 - Interstellar objects
 - Earth Trojans

• ••

Venus / Sif Mons

Ariel

Radar and NEA Detectability

Ostro & Giorgini

Received Power (a.k.a. Radar Equation)

Maximize P_{RX} subject to cost cap, including operations!

- \succ Operations $\propto N$
- Using array for both transmit and receive changes result

Arecibo Observatory

Transmitter Power P_{TX}

Focus on "lower power," more reliable systems

Antenna Diameter D

Focus on smaller, deployed or to be deployed, antennas

Radar Array Performance and Optimization

Planetary Radar Array Performance: 20 m asteroid

Cost Cap ~ Discovery-class mission

Summary

Multi-antenna array transmit-receive system feasible

- Benefits
 - Enable diverse science portfolio
 - Individual transmitters would be lower power, (much) higher reliability projected
 - Graceful degradation
 - Today: loss of one klystron = 50% decrease
 - Array: Loss of one antenna/transmitter decreases EIRP by ~ (1-1/N)
 - Potential synergies with radio astronomy array projects requiring new antennas

Callisto