

A VISION FOR PLANETARY AND EXOPLANETS SCIENCE: EXPLORATION OF THE INTERSTELLAR MEDIUM: THE SPACE BETWEEN STARS

IAC-17-D4.4.1x41640

Leon Alkalai, Nitin Arora, Slava Turyshev, Michael Shao, Stacy Weinstein-Weiss Jet Propulsion Laboratory, California Institute of Technology

Merav Opher, Boston University, MA, USA

Seth Redfield, Wesleyan University, CT, USA

68th International Astronautical Congress (IAC 2017), Adelaide, Australia September 29th, 2017 POC: Leon Alkalai, <u>leon.alkalai@jpl.nasa.gov</u>

KISS Workshops on: "The Science and Enabling Technologies for the Exploration of the ISM", Stone, Alkalai, Friedman, 2015

https://kiss.Caltech.edu/interstellar/workshops/ism

The Interstellar Medium

Local ISM elements

Structure of the region where solar wind interacts with the ISM.

LISM Magnetic Field

Key elements of the interaction between the solar wind and the ISM, including the Termination Shock, Bow Shock, Galactic Cosmic Rays, etc.

Simulation by Opher Merav et. al

LISM Magnetic Field

Tilted interstellar magnetic field (black curves) creates asymmetric heliosphere. Trajectories of Voyager 1 and 2 are shown by white arrows.

Simulations by Opher Merav et. al

LISM: H, Magnetic Field

Complex interaction of the interstellar neutral Hydrogen atoms (color contours in #/cm3) and the interstellar magnetic field (red and green lines) coming into contact with the solar wind protons and magnetic fields in the Heliosphere (yellow surface).

Picture courtesy of Opher Merav.

Opher et al. The Astrophysical Journal Letters, Volume 800, Issue 2, article id. L28, 7 pp. (2015)

Pristine ISM

The clouds of the pristine Interstellar Medium

Source: Seth Redfield

Solar Gravity Lens - Telescopes

- Solar gravity lens line (> 550 AU)
- Unprecedented exoplanet imaging capability and SNR for spectroscopy (SGL magnification is \sim 2E+11 at 1 μ m)
- Target has to be known a priori

Image of earth in 1000 X 1000 pixel resolution

Source: Slava Turyshev, JPL

ISM Exploration Program:

- Probes to explore and sense the Local Interstellar Medium (LISM):
 8 10 years from launch at 100 200 AU
- 2. Probes to explore Pristine ISM:
 10 20 years from launch; 200 400 AU
- Deploy imaging telescopes to the SGL to image exoplanets:
 25 30 years from launch; 500 800 AU
- Technology Development Program: Propulsion, Power, Avionics, Telecommunications, Navigation

Two General Class of Trajectories For Solar-System Escape

Three Pronged Approach for ISM / SGL Exploration

Credit: Martin Kornmesser & Lars Lindberg Christensen, ST-ECF.

Small Spacecraft (3-6) for near-term rapid exploration of the Local ISM (<150 AU)

A deep ISM probe (>250 AU), travelling at ~20 AU/Yr., flyingby major KBO and reaching target ISM distance in < 20 years A mission to SGLF for deploying a 0.5-2m telescope, travelling at > 20 AU/Yr., reaching SGLF in < 40 years from launch

Mission Concept Requirements

Note: Voyager escape velocity ~3.5 AU/Yr., New Horizons ~2.5 AU/Yr.

FOM	Local ISM Small Probes	Deep ISM Explorer	SGLF Telescope
Solar-system escape velocity (AU/Yr.)	< 10 AU/Yr.	< 20 AU/Yr.	> 20 AU/Yr.
Mission Time of Flight (years)	15	20	40
Distance at End of Mission (AU)	~150	250 - 300	> 600
# of Spacecraft	3-6	1	1
Typical probe wet mass	< 160 kg	< 550 kg	< 600 kg
Typical number of instruments	1 – 2	3 - 6	1 (telescope)

Propulsion Options

Option	Fuel Type	ISP	Usage	Other comments
Solid Rocket Motor (SRM)	Solid	308s	Perihelion or Powered flyby	High ISP is available via deployed nozzle
Nuclear Thermal Propulsion (NTP)	H2	850s -940s	Perihelion or Powered flyby	H2 tank is heavy and needs to be cryocooled. Nuclear Fission based reactor results in large dry-mass
Solar Thermal Propulsion (STP)	H2	1200s -1350s	Perihelion	Utilizes heat from proximity to the Sun to heat up the H2 (at 3400k) and expel it at high velocity using engine nozzles. This concept requires a heat-exchanger
RTG powered EP (REP)	Xenon	~1800s	Probe	Propellant is carried on the probe and used during the escape phase
Electric or Solar Sail	-	-	Probe	Sail deployed on the probe beyond 0.1 AU

- Local ISM Armada \rightarrow SRM or NTP
- Deep ISM \rightarrow STP + REP or STP + E-Sail
- SGLF Mission \rightarrow STP + REP or STP + E-Sail

Type 2 Perihelion Maneuver

Escape Velocity Contours in AU/Yr.

STP Baseline Mission Design (Deep ISM Explorer)

- E-V-V-E-J-Perihelion-KBO-ISM four flyby sequence
- Launch in mid 2030s (early launches are possible)
- Flyby KBO Haumea in ~11 years
- No deep space maneuvers
- STP Perihelion burn ~11.2 km/s
- REP provides $\sim 4 \text{ km/s} \Delta V$
- Escape (KBO flyby) velocity > 90 km/s or > 19 AU/Yr.

Enabling Features:

- STP Perihelion burn + REP provides breakthrough escape velocity of >19 AU/Yr.
- Low launch C3 'banks' delta-V for use at perihelion
- Launch on NASA's SLS

Pristine ISM Probe

Probe Design: Deep ISM Explorer

Sub-system	MEV (kg)	Comments
Power (without SMRTG)	47	Ref. bus + batteries
Propulsion	17	Monoprop
Telecomm.	30	Iris level radio, 1m - 2 m deployable HGA
Mechanical	177	Light weight, multi-functional structures
Thermal	29	RTG + RHU and Louvers
Attitude & Control	34	RWA, MIMU
C&DH	15	3U JPL Avionics
Science Payload	42	Fields and Particles + Camera
Propellant	25	Can be Xenon or can be extra mass for an E-Sail
System Level Margin	74.4	According to JPL DP
2x SMRTG	52	No margin needed for RTGs
Total Allocation	542	Wet mass / probe

National Aeronautics and

Space Administration

LISM Probe Mass Breakdown

Sub-system	MEV (kg)	Comments
Power (without SMRTG)	11	"right-sized" SMRTG
Propulsion	20	REP or E-Sail
Telecomm.	4	Iris level radio, 1m - 2 m deployable HGA
Mechanical	20	Light weight, multi-functional structures
Thermal	6	RTG + RHU and Louvers
Attitude & Control	3	Monoprop + small-sat ACS
C&DH	1	SmallSat Avionics
Science Payload	9	1-2 instruments
Propellant	25	Can be Xenon or can be extra mass for a bigger E-Sail
System Level Margin	21	According to JPL DP
SMRTG mass	40	No margin needed for RTGs
Total Allocation	160	Wet mass / probe

Probe Design: SGLF Telescope

Sub-system	MEV (kg)	Comments
Power (without SMRTG)	47	Ref. bus + batteries
Propulsion	17	Monoprop
Telecomm.	30	Iris level radio, 1m - 2 m deployable HGA
Mechanical	177	Light weight, multi-functional structures
Thermal	29	RTG + RHU and Louvers
Attitude & Control	34	RWA, MIMU
C&DH	15	3U JPL Avionics
Telescope	50	0.5-1m Telescope
Propellant	25	Can be Xenon or can be extra mass for a bigger E-Sail
System Level Margin	80	According to JPL DP
2x SMRTG	52	No margin needed for RTGs
Total Allocation	556	Wet mass / probe

Very Large solar sails

Very Large Electric sails

Beamed Propulsion

Orion (Nuclear Pulsed

Propulsion)

Nuclear Fusion Rocket

http://www.daviddarling.info/encyclopedia/I/interstellar_ramjet.html

Bussard Ramjet

Summary of proposed ISM Program

Interstellar Program Elements

National Aeronautics and Space Administration

Probes carrying telescope to the SGL: 500 – 800 AU

Deep ISM Probes to the Pristine ISM: 200 – 400 AU

Small Satellite Probes to the Local ISM: 100 – 200 AU

Technology Development Program: Propulsion, Power, Telecom., Autonomy

All Paths to Exoplanets go through the ISM