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We consider the propagation of electromagnetic (EM) waves in the gravitational field of the Sun within
the first post-Newtonian approximation of the general theory of relativity. We solve Maxwell’s equations
for the EM field propagating on the background of a static mass monopole and find an exact closed form
solution for the Debye potentials, which, in turn, yield a solution to the problem of diffraction of EM waves
in the gravitational field of the Sun. The solution is given in terms of the confluent hypergeometric function
and, as such, it is valid for all distances and angles. Using this solution, we develop a wave-theoretical
description of the solar gravitational lens (SGL) and derive expressions for the EM field and energy flux in
the immediate vicinity of the focal line of the SGL. Aiming at the potential practical applications of the
SGL, we study its optical properties and discuss its suitability for direct high-resolution imaging of a distant
exoplanet.
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I. INTRODUCTION

According to Einstein’s general theory of relativity [1,2],
gravitation induces refractive properties on spacetime [3],
with massive objects acting as lenses by bending photon
trajectories [4] and amplifying brightness of faint sources.
Experimental confirmation of the general relativistic gravi-
tational bending of light nearly a century ago [5,6]
unambiguously established that celestial bodies act as
gravitational lenses, deflecting light from distant sources.
The properties of gravitational lenses, including light
amplification and the appearance of ringlike images
(Einstein rings), are well established [7,8] and have a rich
literature [9–17]. Compact, opaque and spherical bodies
acting as gravitational lenses could be used as diffractive
telescopes to form images of distant objects at extreme
resolution [18].
Unlike an optical lens, a gravitational lens is astig-

matic, with the bending angle inversely proportional to
the impact parameter of a light ray with respect to the
lens. Therefore, such a lens has no single focal point but a
focal line. Although all the bodies in the solar system may
act as gravitational lenses [4], only the Sun is massive and
compact enough for the focus of its gravitational deflec-
tion to be within the range of a realistic deep space
mission. Its focal line begins at ∼547.8 astronomical units
(A.U.). A probe positioned beyond this distance from
the Sun could use the solar gravitational lens (SGL) to
magnify light from distant objects on the opposite side
of the Sun [16,19].
In recent years, the unique properties of the SGL

garnered increasing attention. On the one hand, the
discovery of numerous exoplanets by the Kepler

telescope, including those that may be Earth-like
[20], created interest in methods to image these distant
worlds. On the other hand, the success of the Voyager-1
spacecraft, operating at a distance of nearly 140 A.U.
from the Sun, demonstrates the feasibility of long-
duration deep-space missions to the outer solar system,
including regions where images are formed by the SGL.
The idea of using the SGL for direct megapixel high-
resolution imaging of an object of extreme interest,
such as a habitable exoplanet, was only recently
suggested [21]. It was extensively discussed within
the context of a recent study at the Keck Institute
for Space Studies [22]. In the past, only the amplifi-
cation properties of the SGL under a set of idealized
physical conditions were explored, considering only the
gain of a combined receiver consisting of a large
parabolic radio antenna, at the focus of which there
was a single pixel detector situated on the focal line of
the SGL [16,19,23]. The SGL’s imaging properties,
where the image occupies many pixels in the immediate
vicinity of the focal line, are still not fully explored
(except perhaps for some introductory considerations
on geometric raytracing [24,25]), especially in a deep-
space mission context. In addition, the SGL’s potential
for high-resolution spectroscopy should also be
considered.
The reason for the large amplification of the SGL is the

fact that, as a typical gravitational lens, the SGL forms a
folded caustic [26,27] in its focal area. As the wavelength
of light is much smaller than the Schwarzschild radius of
the Sun, the wavefront in the focal region of the SGL is
dominated by the caustic and singularities typical for
geometric optics. In reality, the geometric singularities
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are softened and decorated on fine scales by wave effects
[28,29]. Despite leading to divergent results, geometric
optics may be used to predict the focal line, and make
qualitative arguments about the magnification and the size
of the image. However, designing a telescope entails
addressing practical questions concerning the magnifica-
tion, resolution, field of view (FOV), and the plate scale of
the imaging system. These parameters are usually esti-
mated by a wave optics approach and are needed to assess
the imaging potential of the SGL. Recently, we reported on
a method [30] of providing a wave-theoretical description
of the SGL, demonstrating that with its light amplification
power of ∼1011 (for λ ¼ 1 μm) and angular resolution of
≲10−10 arcsec, the SGL may be used for direct megapixel
imaging of an exoplanet. In this paper we provide details of
this derivation.
This paper is structured as follows: In Sec. II, we

consider propagation of electromagnetic waves in
Einstein’s general theory of relativity (GR). We establish
a set of equations that guide the evolution of an EMwave in
the presence of a static gravitational monopole. We solve
these equations in the post-Newtonian approximation of the
GR. In Sec. III we find exact solutions for the Debye
potentials for the EM waves traversing the field of a static
gravitational monopole. We derive the components of the
entire EM field and determine the components of the
relevant Poynting vector. Our results yield a wave-optical
description of a monopole gravitational lens and are valid
for any distances and angles, including those in the
immediate vicinity of the focal line. In Sec. IV we provide
preliminary considerations for imaging with the Solar
Gravitational Telescope (SGT) and its potential application
for direct multipixel imaging and spectroscopy of an
exoplanet. In Sec. V we discuss our results and the potential
of using the SGL for remote investigations of faint distant
objects. In an attempt to streamline the discussion, we
placed some important but technically lengthy derivations
into appendices. Appendix A contains a summary of
results concerning the (3þ 1) decomposition of a general
Riemannian metric and relevant useful relations.
Appendix B is devoted to a description of light propagation
in a weak, static gravitational field. We solve the geodesic
equation and model the phase evolution in the context of
geometric optics. We also discuss spherical waves in the
post-Newtonian gravity. In Appendix C we present useful
properties of the confluent hypergeometric functions.
Appendix D discusses Coulomb functions. Appendix E
introduces Debye potentials as a means to represent the
electromagnetic field. Finally, Appendix F discusses the
Wentzel-Kramers-Brillouin (WKB) approximation.

II. ELECTROMAGNETIC WAVES IN A
STATIC GRAVITATIONAL FIELD

To describe the optical properties of the solar
gravitational lens (SGL), we use a static harmonic

metric1 in the first post-Newtonian approximation of the
general theory of relativity. The line element for this metric
may be given, in spherical coordinates ðr; θ;ϕÞ, as [3,32]

ds2 ¼ u−2c2dt2 − u2ðdr2 þ r2ðdθ2 þ sin2 θdϕ2ÞÞ; ð1Þ

where, to the accuracy sufficient to describe light propa-
gation in the solar system, the quantity u can be given in
terms of the Newtonian potential U as

u ¼ 1þ c−2UþOðc−4Þ; where UðxÞ ¼ G
Z

ρðx0Þd3x0
jx− x0j :

ð2Þ

The metric (1)–(2) allows us to consider the largest
effects of the gravitational field of the Sun on propagation
of light, those due to the static distribution of matter inside
the Sun. One may also want to consider including solar
rotation, but its effect, although measurable, is much less
than those of the solar monopole and quadrupole [33].
Thus, the solar spin is not present in the metric above.
Nevertheless, if needed, one can always consider the effect
of the solar rotation on the properties of the SGL using
the same methods that are developed in this paper. Also,
the gravitational field of the Sun is weak: its potential is
GM=c2r≲ 2 × 10−6 everywhere in the solar system. This
allows us to carry out calculations to the first post-
Newtonian order, while dropping higher-order terms.
The generally covariant form of Maxwell’s equations for

the electromagnetic (EM) field is well known:

∂lFik þ ∂iFkl þ ∂kFli ¼ 0;

1ffiffiffiffiffiffi−gp ∂kð
ffiffiffiffiffiffi
−g

p
FikÞ ¼ −

4π

c
ji; ð3Þ

1The notational conventions used in this paper are the same as
in [31,32]: Latin indices (i; j; k;…) are spacetime indices that run
from 0 to 3. Greek indices α; β;… are spatial indices that run
from 1 to 3. In case of repeated indices in products, the Einstein
summation rule applies: e.g., ambm ¼ P

3
m¼0 amb

m. Bold letters
denote spatial (three-dimensional) vectors: e.g., a ¼ ða1; a2; a3Þ,
b ¼ ðb1; b2; b3Þ. The dot (·) and cross (×) are used to indicate the
Euclidean inner product and cross product of spatial vectors;
following the convention of [3], these are enclosed in round and
square brackets, respectively. Latin indices are raised and lowered
using the metric gmn. The Minkowski (flat) spacetime metric is
given by γmn ¼ diagð1;−1;−1;−1Þ, so that γμνaμbν ¼ −ða · bÞ.
We use powers of the inverse of the speed of light, c−1, and the
gravitational constant, G as bookkeeping devices for order terms:
in the low-velocity (v ≪ c), weak-field (rg=r ¼ 2GM=rc2 ≪ 1)
approximation, a quantity of Oðc−2Þ≃OðGÞ, for instance, has a
magnitude comparable to v2=c2 or GM=c2r. The notation
Oðak; blÞ is used to indicate that the preceding expression is
free of terms containing powers of a greater than or equal to k,
and powers of b greater than or equal to l. Other notations are
explained in the paper.
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where Fik is the antisymmetric Maxwell tensor of the EM
field [31], gmn is a Riemann metric tensor with g ¼ det gmn
its determinant, and ∂k are coordinate derivatives.
Note that in this paper we study the propagation of the

EM waves on the background of the Sun without account-
ing for the corona. That is to say, we do not consider
contributions of the solar plasma to light propagation. The
refractive properties of the solar corona are such that for
high-frequency EM waves such as visible light, one may
neglect the refractive effects of the solar plasma [34]. This
may not be the case for any noise contribution to an image
due to the brightness of the corona. These issues will be
addressed elsewhere. Here we consider only a purely
gravitational case, accounting only for the shadow due
to a spherical Sun, but ignoring the corona.

A. Maxwell’s equations in three-dimensional form

To study the problem of gravitational lensing, we need to
present equations (3) in a three-dimensional form. To this
effect, we consider a (3þ 1) decomposition of a generic
metric gmn (e.g., using methods discussed in Sec. 84 of
[31]). We introduce quantities describing physical vectors
of the EM field, namely the 3-vectors E, D and antisym-
metric 3-tensors Bαβ and Hαβ: Eα ¼ F0α, Dα ¼ − ffiffiffiffiffiffi

g00
p

F0α,
Bαβ ¼ Fαβ, Hαβ ¼ ffiffiffiffiffiffi

g00
p

Fαβ (see the problem in Sec. 90
of [31]). These quantities are not independent. In the case
of a static metric, such as that given by (1), for which
g0α ¼ 0 and ∂0gmn ¼ 0, they are related by the following
identities:

D ¼ 1ffiffiffiffiffiffi
g00

p E ¼ uE; B ¼ 1ffiffiffiffiffiffi
g00

p H ¼ uH: ð4Þ

Given the definitions above, Eqs. (3) can be written in the
following three-dimensional form:

curlκE ¼ −
1ffiffiffi
κ

p ∂0ð
ffiffiffi
κ

p
BÞ; divκB ¼ 0; ð5Þ

curlκH ¼ 1ffiffiffi
κ

p ∂0ð
ffiffiffi
κ

p
DÞ þ 4π

c
j; divκD ¼ 4πρ; ð6Þ

where the differential operators curlκF and divκF, for
the static metric (1) are taken with respect to the three-
dimensional metric tensor καβ ¼ −gαβ [see (A1)–(A2) and
(A9)–(A10) in Appendix A for details].
We consider the propagation of an EM wave in the

vacuum where no sources or currents exist, i.e.,
jk ¼ ðρ; jÞ ¼ 0. For the metric (1), using the definitions
(4) together with (A2) and (A9)–(A10), we obtain the
following form for Maxwell’s equations (5)–(6):

curlD ¼ −u2
∂B
c∂tþOðG2Þ; divðu2DÞ ¼ OðG2Þ; ð7Þ

curlB ¼ u2
∂D
c∂tþOðG2Þ; divðu2BÞ ¼ OðG2Þ; ð8Þ

where the differential operators curlF and divF are now
with respect to the usual 3-space Euclidean flat metric.
Using the standard identities of vector calculus involving

the ∇ operator [35,36] and a bit of algebra, one can verify
that D and B obey the following wave equations:

ΔD−u4
∂2D
c2∂t2− ½curlD×∇lnu2�þ∇ðD ·∇lnu2Þ¼OðG2Þ;

ð9Þ

ΔB−u4
∂2B
c2∂t2− ½curlB×∇lnu2�þ∇ðB ·∇lnu2Þ¼OðG2Þ:

ð10Þ

All the properties of a propagating EM wave in the
presence of a weak and static post-Newtonian gravitational
field are encoded in (9)–(10). Note that the last two terms in
(9) and (10) are important for establishing the directional
and polarization properties of EM field represented by the
vectors D and B.2 As we show in this paper, omitting these
terms (e.g., as in [40]) may lead to the loss of important
information about the propagation direction and the ampli-
tude of the EM field. These equations can be used to study
propagation of EM waves in the presence of a weak and
static gravitational field. In particular, in the case of solving
the problem of diffraction of the EM waves, they can be
used to describe both incident and scattered waves. This is
the knowledge that helps us study the properties of the EM
field in the image plane when dealing with the imaging
properties of the SGL.

B. Solving Maxwell’s equations

We look for a solution to the wave equations (9)–(10) for
the fields D and B in the following generic form:

D ¼ ψde−iωt and B ¼ ψbe−iωt; ð11Þ
where ψðrÞ is a scalar function representing the intensity of
a monochromatic EM wave along the path of its propaga-
tion, dðrÞ and bðrÞ are unit vectors specifying the direction
of the wave’s propagation and its polarization, and ω is the
frequency of the wave. Although (11) gives the two fields
as complex quantities, the actual physical fields D and B

2Equations (9) and (10) are rather well known. In fact, they
are similar to (5)–(6) in Chapter 1.2 of [37], written for an EMwave
propagating in a refractivemedium.A formofMaxwell’s equations,
similar to (9)–(10), appears any timewhenone dealswithEMwaves
propagating in amediumwith a variable index of refraction, such as
in the case of optical waveguides [38,39]. This form emphasizes the
fact that a weak gravitational field also induces effective refractive
properties on spacetime [3]. These properties may be investigated
using the tools of classical optics [31,37].
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are given by the real part of these expressions. Then, for
example, the wave equation (9) can be presented in terms of
equations for the new quantities ψ and d as

fΔψ þ k2u4ψgdþ 2ð∇ψ · ∇Þd − dð∇ψ · ∇ ln u2Þ
þ 2∇ψðd · ∇ ln u2Þ þ ψfΔd − 2½½∇ × d� × ∇ ln u2�
þ ð∇ ln u2 · ∇Þdþ ðd · ∇Þ∇ ln u2g ¼ OðG2Þ; ð12Þ

where k ¼ ω=c is the wave number, as usual. As we intend
to work with optical frequencies, Eq. (12) may be sim-
plified. For high-frequency propagation, the representation
of D given in (11) implies [41] that���� j∇2dj

jdj
����1=2; j∇dj

jdj ; and
1

r
≪ j∇ lnψ j; ð13Þ

which means that Ld ≫ Lψ and r ≫ Lψ , where Ld and Lψ

represent the typical length scales over which the changes
in d and ψ , respectively, are significant [41] (same applies
to b). In other words, we can see that d (and b) vary slowly,
but ψ varies rapidly when k → ∞, resulting in the follow-
ing relationships:

j∇Dj ∼ jkDj; j∇2Dj ∼ jk2Dj: ð14Þ
Thus, in the case of high-frequency EM wave propagation,
the following two equations hold simultaneously3:

Δψ þ k2u4ψ ¼ OðG2Þ; ð15Þ

ð∇ψ ·∇Þd¼−ðd ·∇ lnu2Þ∇ψþ1

2
ð∇ψ ·∇ lnu2ÞdþOðG2Þ:

ð16Þ
Below, we focus our discussion on the largest contribution

to the gravitational deflection of light, namely that produced
by the field of a gravitational monopole. In this case, the
Newtonian potential in (2) is given as c−2UðrÞ ¼ rg=2rþ
Oðr−3; c−4Þ, where rg ¼ 2GM=c2 is the Schwarzschild
radius of the source.4 Therefore, the quantity u in (1) and
its logarithmic gradient ∇ ln u2 have the form

uðrÞ ¼ 1þ rg
2r

þOðr−3; c−4Þ and

∇ lnu2 ¼ −
rg
r3
rþOðr−3; c−4Þ: ð17Þ

As a result, the system of Eqs. (15)–(16) takes the form

Δψ þ k2
�
1þ 2rg

r

�
ψ ¼ Oðr2gÞ; ð18Þ

ð∇ψ ·∇Þd¼rg
r3

�
ðd ·rÞ∇ψ−

1

2
ð∇ψ ·rÞd

�
þOðr2gÞ: ð19Þ

Experiments in the presence of weak gravitational fields,
such as those present in our own solar system [4], are often
described using geodesic equations. These equations deter-
mine the direction of light propagation and related rela-
tivistic frequency shifts [43,44]. However, geodesic
equations provide no information about gravitationally
induced changes in the intensity of light. In the solar
system, such changes are quite small and very difficult to
detect. This is precisely the focus of our interest when we
consider the solar gravitational telescope scenario.
To investigate the intensity changes that result from the

gravitational amplification of light, we need to develop a
wave-theoretical treatment of light propagation in gravity.
Equations (18)–(19) could be used for this purpose. These
are derived from the wave equations (9)–(10) and provide a
complete description of an EM wave propagating in a weak
and static gravitational field (which, according to Fock [3],
acts as a variable index of refraction). Specifically, (18)
determines the change in the intensity of the EM field,
while (19) describes the changes in the direction of
propagation of the EM wave and its polarization.
We can solve Eqs. (18)–(19) iteratively to first order in

G. This can be done along the path of wave propagation,
which is established by relying on the geodesic equation
(see Appendix B).

C. Solving the wave equations

To find the formal solution for the EM field, we begin
with (18). This equation is well known: it is nearly identical
to the time-independent Schrödinger equation that
describes the scattering problem in a Coulomb potential
in nuclear physics.5 We take a spherical coordinate system

3Note that representations similar to (15)–(16) occur when
raytracing methods are used to describe the propagation of high-
frequency EM waves in optical waveguides [39]. The numerical
tools developed in that area may be quite useful to model imaging
with the SGL.

4If needed, our approach, in conjunction with the tools
developed in [42,43], may be used to account for the contribu-
tions from higher order gravitational multipole moments. For
details, see Appendices B 1 and B 2.

5A choice of constants rg ¼ −γ=k makes (18) identical to the
time-independent Schrödinger equation describing the scattering
problem in a Coulomb potential [45], where γ ¼ Z1Z2e2=ℏvwith
Z1e, Z2e are the charges of the two particles and v is their relative
velocity. The first analytical solution to (18) was given by Mott in
1928 [46]. A more elegant form was found a few months later by
Gordon [47], using the ansatz ψðrÞ ¼ eikzfðr − zÞ. The complex-
valued function f describes the perturbation of the incoming
plane wave and transforms (18) into a solvable differential
equation for f [45]. The same equation appears in other problems
of modern physics, for instance, in problems describing photo-
thermal single-particle Rutherford scattering microscopy that
involves the scattering of waves by a 1=r refractive index profile
formed by the presence of a pointlike heat source in a homo-
geneous medium (e.g., [48–50]).

SLAVA G. TURYSHEV and VIKTOR T. TOTH PHYSICAL REVIEW D 96, 024008 (2017)

024008-4



ðr; θ;ϕÞ and also use Cartesian coordinates such that the x
and z axes, r and angle θ are given as in Fig. 1.
We consider the propagation of a monochromatic EM

wave along the z axis coming from a source at infinity. As
is known from textbooks on quantum mechanics (e.g.,
[45,51–54]), (18) has a solution that is regular at the origin,
which can be given as

ψðrÞ ¼ ψ0eikz1F1ðikrg; 1; ikðr − zÞÞ; ð20Þ

where z is the projection of r onto the optical axis (i.e., a
coordinate along that axis; see Fig. 1), ψ0 is an integration
constant and 1F1 is the confluent hypergeometric function
[55] (also known as Kummer’s function of the first kind,
M½α; β; w�; see Appendix C for more details and useful
relations).
The solution (20), also shown in Fig. 2, describes a wave

coming from a large distance along the z axis (for the
relevant geometry, see Fig. 1) and generalizes the incoming
plane wave solution ψ0ðrÞ ¼ eikz, which is familiar from
studying wave propagation in Euclidean spacetime. In fact,
Eq. (20) reduces to eikz when rg → 0. Thus, one may use

the solution (20) to describe the incident “plane wave” that
is sourced at infinity, in the presence of a gravitational
monopole with a 1=r potential. All the important contri-
butions to ψ0ðrÞ from gravitation are contained in the
function 1F1½α; β; w�.
Given the asymptotic properties of 1F1½α; β; w� from

(C22) (see details of derivation in Appendix C 2), we obtain
the asymptotic form of Eq. (20) as

ψðrÞ ¼ ψ0

e−
π
2
krg

Γð1 − ikrgÞ
�
eikðz−rg ln kðr−zÞÞ

þ rg
r − z

Γð1 − ikrgÞ
Γð1þ ikrgÞ

eikðrþrg ln kðr−zÞÞ

þO
�
ikr2g
r − z

��
: ð21Þ

This approximation is valid for large values of the argument
kðr − zÞ ≫ 1 and for angles θ satisfying θ ≳ ffiffiffiffiffiffiffiffiffiffiffi

2rg=r
p

(see
Fig. 3). This region is relatively far from the optical axis;
light refraction here is well described by geometric optics.
This solution offers a good starting point for the develop-
ment of the wave-theoretical treatment of the SGL.
Typically, one normalizes the solution at large distances

from the deflecting center by requiring that the function ψ
behaves as limkðr−zÞ→∞ψψ

� ¼ 1 (a.k.a. Gamow normali-
zation [45,53]), which results in ψ0 ¼ e

π
2
krgΓð1 − ikrgÞ.

However, in our case, we require that at larger distances

FIG. 2. The phase of (20) describing the propagation of a
wavefront (from left to right) diffracted by a point source
gravitational lens. Drawn in arbitrary units for qualitative
description; actual values cannot be plotted due to their differing
orders of magnitude.

FIG. 1. Heliocentric spherical polar coordinate system ðr; θÞ (ϕ
suppressed) as well as the z and x coordinates used to describe the
diffraction of light by the gravitational monopole.

FIG. 3. Clockwise from top left: The approximation given by
(23); by (24); the combined contribution of (23) and (24); finally,
the difference between (20), which was shown in Fig. 2, and (23).
The phase becomes divergent along the optical axis. Units are
arbitrary.
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from the deflector the intensity of the EM field, ψ , is to be
equal to that at the source, namely limkðr−zÞ→∞ψψ

� ¼ E2
0

(in the vacuum E0 ¼ H0). This results in the following
choice for the constant ψ0:

ψ0 ¼ E0e
π
2
krgΓð1 − ikrgÞ: ð22Þ

As a result, at large distances from the deflector, the
incident wave [ψincðrÞ, given by the first term in (21)]
and the scattered wave [ψsðrÞ, given by the second term in
(21)] take the following asymptotic forms:

ψincðrÞ ¼ E0eikðz−rg ln kðr−zÞÞ
�
1þO

�
ikr2g
r − z

��
; ð23Þ

ψsðrÞ ¼ E0

rg
r − z

Γð1 − ikrgÞ
Γð1þ ikrgÞ

eikðrþrg ln kðr−zÞÞ

×

�
1þO

�
ikr2g
r − z

��
: ð24Þ

The solution provided in the form of Eqs. (23)–(24) is
well known from the Coulomb scattering problem in
nuclear physics. What is its meaning in general relativity?
Equations (23)–(24) do not exhibit the familiar geodesic
behavior that is characteristic of rays of light. Nonetheless,
with some algebra [see Appendix B 2, Eq. (B33)], we can
show that (23) is consistent with a solution for the phase of
an EM wave propagating in the background of a weak and
static gravitational field. For a wave moving from a remote
source along the z axis, ðk · rÞ ¼ z, where k is the
unperturbed unit vector of the photon’s trajectory (see
Sec. B 1 for details). Therefore, from (B33) and (B14),
for a wave moving along a geodesic, we obtain, for the
change of phase along the path, δφ ¼ kððk · ðr − r0ÞÞþ
rg lnðr þ ðk · rÞÞ=ðr0 þ ðk · r0ÞÞ þ Oðr2gÞÞ ¼ kðz − z0−
rg lnðr − zÞ=ðr0 − z0Þ þ Oðr2gÞÞ. Thus, the time-
independent part of the phase of the incident wave has
the form φðrÞ ¼ kðz − rg ln kðr − zÞ þOðr2gÞÞ, given by
(23), which is consistent with a geodesic solution.
To understand the meaning of Eq. (24), we rewrite it

using z ¼ r cos θ as follows:

ψsðrÞ ¼ E0fðθÞ
1

r
eikðrþrg ln 2krÞ þOðr2gÞ; where

fðθÞ ¼ rg
2 sin2 θ

2

Γð1 − ikrgÞ
Γð1þ ikrgÞ

eikrg ln sin
2θ
2; ð25Þ

with fðθÞ being the scattering amplitude familiar from
nuclear scattering.
One can see that the phase in the first expression in (25)

is consistent with the phase of a radial geodesic or that of an
outgoing spherical wave [see discussions in Appendix B 4,
Eq. (B55)]. From (25), for the change of phase along a

radial geodesic, we have δφ ¼ k0ðr − r0 þ rg ln r=r0 þ
Oðr2gÞÞ, which indicates that the time-independent part
of the phase of a scattered wave is that of a spherical wave
given by (B55) as φðrÞ ¼ kðrþ rg ln 2krþOðr2gÞÞ and is
consistent with the phase of a radial geodesic (B34). The
quantity fðθÞ in (25) is the scattering amplitude that was
first derived by Rutherford for the electron scattering
problem in nuclear physics [56] and has been confirmed
in many experiments. This amplitude modifies the outgoing
spherical wave (B55) (discussed in Appendix B 4).
Therefore, the two solutions to the time-independent wave

equation (18) are both consistent with the familiar geodesic
solutions in a weak and static gravitational field (as discussed
in Secs. B 1 and B 2). The phase of the incident wave is
consistent with the geodesic solution (B33), while the
scattered wave is consistent with a spherical wave solution
(B55) or, equivalently, with radial geodesics (B34). With this
knowledge we may already identify these features in (20).
Solution to this equation is given in Fig. 2, which clearly
shows the presence of both of these waves, namely the
Coulomb-modified incident wave and the outgoing spherical
wave modified by the scattering amplitude.
To interpret the approximate solutions (23)–(24), it helps

to study the schematic geometry shown in Fig. 1. Light
from a distant source reaches the point of observation
(black dot on the right-hand side) via two paths. When the
point of observation is a significant distance away from the
focal line, these two paths are qualitatively different.
Perturbations to the path on the same side of the focal line

as the point of observation (the “top” ray of light in Fig. 1)
are dominated by deflection. Neighboring rays in a tight
family of rays diverge (“spread out”) minimally. Therefore,
this path is well approximated by Eq. (23), which describes a
plane wave slightly perturbed by deflection. This wave is
shown in the top left panel of Fig. 3. We call this part of the
solution the (perturbed) “incident” wave.
In contrast, perturbations to the path on the side of the

focal line opposite to the point of observation (the “bottom”
ray of light in Fig. 1) are dominated by scattering. These
rays reach the point of observation because they have a
small impact parameter and a large angle of deflection.
As a result, even neighboring rays, with only slightly
different impact parameters, will suffer noticeably different
deflections. The resulting wavefront is dominated by this
divergent (“spreading out”) behavior, and thus it is well
approximated as a spherical wave emanating from the
gravitational lens itself; that is to say, Eq. (24), which is
depicted in the top right panel of Fig. 3. We refer to this part
of the solution as the “scattered” wave.
The combination of the deflected plane (incident) wave

and the perturbed spherical (scattered) wave, shown in the
bottom right panel of Fig. 3, offers a good approximation
of the propagating wavefront everywhere except for the
vicinity of the focal line. The bottom left panel of Fig. 3
compares this approximation to the original form of (20)
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(see Fig. 2). The conical region on the right-hand side of
this figure is where the geometric optics approximation
fails [34]. It is inconvenient, since the total solution for the
wave function (20) gives the correct asymptotic expression
for any angle. Technically, this is because there are no
known approximations of the confluent hypergeometric
function 1F1 that are simultaneously valid both for large
distances and also for small angles [40].
For a monopole lens, the very fact that any two rays

intersect at the focal line means that these rays essentially
have identical impact parameters. In this case, an observer
will see a thin annulus around the lens representing the
Einstein ring formed by the amplified intensity of the
incident light coming from the direction of the source. At
any given point outside the focal line, the rays will have
different impact parameters. An observer will see two
images of unequal brightness of a distant point source,
one on each side of the lens. Far enough from the focal
line, one ray will suffer minimal deflection due to its large
impact parameter. Meanwhile, the other ray will not only be
deflected but also dispersed as neighboring rays diverge.
The approximation given by (23) describes the ray with
minimal deflection, i.e., a slightly perturbed version of the
incident wave. A weaker contribution dominated by the
factor rg=ðr − zÞ is given by (24), which approximates
these diverging rays with a small impact parameter (passing
close to the lens) as a perturbed spherical wave originating
from the lens.
At a sufficient distance from the focal line, the impact

parameter needed for one of the rays to reach these points
will be smaller than the physical radius of the Sun.
Therefore, these incident rays will be blocked by the
Sun and no scattered rays will be produced. In these cases,
an observer will see only one image described by (23).

D. Amplitude evolution of the incident wave

Given the solution (23) for the incident wave, we can
now proceed with solving (19). This helps us determine the
polarization changes of the EM wave. First, by defining φ
to be the phase of the incident wave ψ i in (23) and using the
usual definition for the wave number, Km ¼ dxm=dλ ¼
gmn∂nφ or Km ¼ ∂mφ, we have

∇ψ ¼ iψ∇φþOðr2gÞ ¼ iψK0κþOðr2gÞ; ð26Þ

where κ is the unit vector along the direction of the wave
vector, such that Kα ¼ K0κα. Note that to Oðr2gÞ, κ ¼
K=jKj has the form κ ¼ kþ κG þOðr2gÞ, with k being the
unperturbed part and κG being the post-Newtonian term,
with both of them given explicitly by (B2).
It is convenient to introduce a parameter l, which is

defined along the path of the photon’s trajectory as l ¼
ðk · rÞ ¼ ðk · r0Þ þ cðt − t0Þ [see (B12) and discussion in
Appendix B 1]. Given K0 ¼ dx0=dλ, we have dl ¼ K0dλ,
and, thus

ð∇φ∇Þd ¼ K0ðκ · ∇Þd ¼
�
dr
dλ

· ∇
�
d ¼ dd

dλ

¼ dx0

dλ
dd
dx0

¼ K0
dd
dx0

¼ K0
dd
dl

: ð27Þ

Substituting (26) and (27) in (19), we obtain the
following equation that can be used to study the post-
Newtonian evolution of d:

dd
dl

¼ rg
r3

�
ðd · rÞk −

1

2
ðk · rÞd

�
þOðr2gÞ: ð28Þ

Given the two linearly independent unit 3-vectors
n ¼ r=r and κ, we can define a triplet of unit vectors, κ,
π ¼ ½κ × n�=j½κ × n�j, and ϵ ¼ ½π × κ�, forming a local
right-handed orthonormal basis: ðκ · πÞ ¼ ðκ · ϵÞ ¼
ðπ · ϵÞ ¼ 0 (see discussion in Appendix B 3). Then, we
can write [36] the vector r in this basis as

r ¼ ðr · kÞkþ ½k × ½r × k�� þ rG þOðr2gÞ
¼ klþ b0 þ rG þOðr2gÞ; ð29Þ

where rG ∼OðrgÞ is the post-Newtonian part of r (derived
in (B21) and we used (B11) to write ðr · kÞ ¼ l and
b0 ¼ ½k × ½r × k�� þOðrgÞ, is the impact parameter (B13).
Similarly, we can write d as

d ¼ ðd · kÞkþ ½k × ½d × k�� þ dG þOðr2gÞ
¼ d∥0kþ d⊥0 þ dG þOðr2gÞ; ð30Þ

where d∥0¼ðd ·kÞþOðrgÞ and d⊥0¼½k× ½d×k��þOðrgÞ
are the components of d in the directions parallel and
orthogonal to k, correspondingly, and dG is the post-
Newtonian part of vector d. Next, we have

ðd · rÞ ¼ d∥0lþ ðd⊥0 · b0Þ þOðrgÞ: ð31Þ

As a result, Eq. (28) takes the form

ddG

dl
¼ rg

ðb20 þ l2Þ3=2
��

1

2
d∥0lþ ðd⊥0 · b0Þ

�
k −

1

2
ld⊥0

�

þOðr2gÞ: ð32Þ

Taking into account that d∥0 and d⊥0 are constant, we
integrate (32) with respect to l from −∞ to l and obtain a
solution for the components of d ¼ d0 þ dG þOðr2gÞ in the
local basis. The B field will evolve in a similar manner. As
a result, the solutions for d and b are both real and have the
following form:
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d ¼
�
d∥0

�
1 −

rg
2r

�
þ ðd⊥0 · b0Þ

rg
b20

�
1þ ðr · kÞ

r

��
k

þ d⊥0

�
1þ rg

2r

�
þOðr2gÞ; ð33Þ

b ¼
�
b∥0

�
1 −

rg
2r

�
þ ðb⊥0 · b0Þ

rg
b20

�
1þ ðr · kÞ

r

��
k

þ b⊥0

�
1þ rg

2r

�
þOðr2gÞ: ð34Þ

We introduce a right-handed Cartesian coordinate sys-
tem ðx; y; zÞ with corresponding unit vectors ðex; ey; ezÞ
and with the origin at the center of mass of the Sun. We take
the z axis to be directed along the unperturbed direction of
the light ray, i.e., along the vector k, while the x and y axes
will be directed along the unperturbed directions set by the
vectors ϵ and π, correspondingly. In Appendix B 3 we show
that in this coordinate system the vectors κ, π, ϵ take the
following form [see (B46)–(B48)]:

ϵ ¼ ex þ
rg

r − z
x
r
ez þOðr2gÞ;

π ¼ ey þ
rg

r − z
y
r
ez þOðr2gÞ;

κ ¼ ez −
rg

r − z
1

r
ðxex þ yeyÞ þOðr2gÞ: ð35Þ

Also, in this coordinate system, d∥0 ¼ dz0 and d⊥0 ¼ ðdx0;
dy0; 0Þ, b0 ¼ ½k × ½r × k�� þOðrgÞ ¼ ðx; y; 0Þ þOðrgÞ,
and, thus, ðd⊥0 · b0Þ ¼ dx0xþ dy0yþOðrgÞ. Similarly,
we have ðb⊥0 · b0Þ ¼ bx0xþ by0yþOðrgÞ. We choose
the components of the incident wave so that it represents
a transverse electric and transverse magnetic (TEM) wave,
namely we require: dz0 ¼ dy0 ¼ bz0 ¼ bx0 ¼ 0. Based on
(33)–(34), the directional vectors of this EM field evolve as

dinc ¼ dx0

�
1þ rg

2r

��
ex þ

rg
b20

x

�
1þ ðk · rÞ

r

�
ez

�
þOðr2gÞ; ð36Þ

binc ¼ by0

�
1þ rg

2r

��
ey þ

rg
b20

y

�
1þ ðk · rÞ

r

�
ez

�
þOðr2gÞ: ð37Þ

As a result, substituting (36)–(37) and (23) into (11),
accounting for the fact that l ¼ ðk · rÞ ¼ z and using (B14)
in the second term in (36) and (37), and also taking the
amplitudes of the unit vectors of the EM field at the source
to be dx0 ¼ by0 ¼ 1, we present the EM field of the
incident wave as

Dincðt; rÞ ¼ E0

�
1þ rg

2r

��
ex þ

rg
r − z

x
r
ez

�
× eikðz−rg ln kðr−zÞÞ−iωt þOðr2gÞ; ð38Þ

Bincðt; rÞ ¼ E0

�
1þ rg

2r

��
ey þ

rg
r − z

y
r
ez

�
× eikðz−rg ln kðr−zÞÞ−iωt þOðr2gÞ; ð39Þ

which, with the help of (35), indicates that Dinc ∝ ϵ and
Binc ∝ π. As the local base vectors ϵ, π and κ are forming a
triplet of orthonormal vectors, the three vectors Dinc, Binc
and κ that characterize the incident wave (38)–(39) are also
orthogonal to each other, namely from (35) one can verify
that ðDinc ·BincÞ¼ðDinc ·κÞ¼ðBinc ·κÞ¼0þOðr2gÞ. So,
as expected, the components orthogonal to the wave vector
do not change as a photon moves along its trajectory,
which, in the case of Dinc, (38), is in the plane spanned by
ex and ez. Thus, the gravitational field of a static monopole
does not change the polarization of an EM wave. At the
same time, the component along the wave vector is mixed
with the orthogonal component and rotates by a small angle
δθ ¼ ðrg=b0Þð1þ ðr · kÞ=rÞ as it moves along the trajec-
tory with the entire EM wave being perpendicular to the
wave vector (similar results were reported in [41]). Similar
behavior is evident from (39) for Binc in the plane formed
by vectors ey and ez.
To proceed with the solution of the scattering problem,

we need to transform (38) and (39) from Cartesian into
spherical coordinates. The curvilinear coordinates appro-
priate to represent the problem are the spherical polar
coordinates ðr; θ;ϕÞ defined as usual by the relationships
ðx; y; zÞ ¼ rðsin θ cosϕ; sin θ sinϕ; cos θÞ. Transforming
(38) and (39) from the Cartesian system ðx; y; zÞ to this
new system of spherical coordinates according to the usual
rules of such coordinate transformations [35], we obtain the
incident wave, Dinc and Binc, in the following form:

Dincðt; rÞ ¼ E0

�
u−1 cosϕ sin θ

�
1þ rg

rð1 − cos θÞ
�
;

u−1 cosϕ

�
cos θ −

rg
r

�
;−u sinϕ

�
ψ iðrÞe−iωt

þOðr2gÞ; ð40Þ

Bincðt; rÞ ¼ E0

�
u−1 sinϕ sin θ

�
1þ rg

rð1 − cos θÞ
�
;

u−1 sinϕ

�
cos θ −

rg
r

�
; u cosϕ

�
ψ iðrÞe−iωt

þOðr2gÞ; ð41Þ

where u is given by (17) and ψ iðrÞ¼eikðrcosθ−rg lnkrð1−cosθÞÞ
is the incident wave (23). As we can see, the phase and the
directional vector of the incident wave are both Coulomb
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modified. This reflects on the fact that the long-range 1=r
field due to the gravitational monopole changes the incident
wave even at large distances from the deflector.

E. Amplitude evolution of the scattered wave

We now consider the evolution of the amplitude of the
scattered wave. Similarly to the incident wave, we may
solve (19) for the scattered wave given the solution (24).
This helps us determine the polarization changes of the
scattered EM wave. First, we recognize the fact that the
amplitude in (24) is a slowly varying function of distance
while the phase varies rapidly. Thus, we may consider
only the phase in finding solution for (19). Following the
approach demonstrated in Sec. II D, we may present (19)
for radial geodesics, i.e., k ¼ n, as

dd
dl

¼ rg
r2

�
ðd · nÞn −

1

2
d

�
þOðr2gÞ; ð42Þ

where the parameter l now is l ¼ r ¼ r0 þ cðt − t0Þ.
Similarly to the discussion of the propagation of the
incident wave amplitude, we present d as

d ¼ ðd · nÞnþ ½n × ½d × n�� þ dG þOðr2gÞ
¼ d∥0nþ d⊥0 þ dG þOðr2gÞ; ð43Þ

where, in this case, d∥0 ¼ ðd · nÞ þOðrgÞ and d⊥0 ¼
½n × ½d × n�� þOðrgÞ are the components of d in the
directions parallel and orthogonal to n, correspondingly,
and dG is the post-Newtonian part of vector d. Then, taking
into account that dl ¼ cdt and, thus, dðd∥0nÞ=dl ¼
dd⊥0=dl ¼ 0, we can present Eq. (42) in the following
form:

ddG

dl
¼ rg

2l2
fd∥0n − d⊥0g þOðr2gÞ: ð44Þ

Taking into account that d∥0 and d⊥0 are constant, we
integrate (44) with respect to l from −∞ to l and obtain a
solution for the components of d ¼ d0 þ dG þOðr2gÞ in the
local basis along the radial path. TheB field will evolve in a
similar manner. As a result, the solutions for d and b of the
scattered wave have the following form:

d ¼ d∥0

�
1 −

rg
2r

�
nþ d⊥0

�
1þ rg

2r

�
þOðr2gÞ;

b ¼ b∥0

�
1 −

rg
2r

�
nþ b⊥0

�
1þ rg

2r

�
þOðr2gÞ; ð45Þ

where we remember that for radial motion l ¼ r. We again
choose the TEM wave, thus, d∥0 ¼ b∥0 ¼ 0 and write the
solution (45) in the following form:

ds ¼ d⊥0

�
1þ rg

2r

�
ð0; cosϕ;− sinϕÞ þOðr2gÞ;

bs ¼ b⊥0

�
1þ rg

2r

�
ð0; sinϕ; cosϕÞ þOðr2gÞ: ð46Þ

As a result, using the entire solution (25) and normal-
izing d⊥0 ¼ b⊥0 ¼ 1, the components of the scattered
wave, Ds and Bs, in the spherical coordinate system
may be given in the following form:

Dsðt; rÞ ¼ E0

�
1þ rg

2r

�
ð0; cosϕ;− sinϕÞfðθÞ

×
1

r
eikðrþrg ln 2krÞ−iωt þOðr2gÞ; ð47Þ

Bsðt; rÞ ¼ E0

�
1þ rg

2r

�
ð0; sinϕ; cosϕÞfðθÞ

×
1

r
eikðrþrg ln 2krÞ−iωt þOðr2gÞ: ð48Þ

As expected, the scattered EM wave is proportional to
the scattering amplitude fðθÞ and multiplies the outgoing
spherical wave as given by (25). Equations (47)–(48) may
be presented in the form showing their explicit dependence
on all the parameters involved:

Dsðt; rÞ ¼ E0

�
1þ rg

2r

�
ð0; cosϕ;− sinϕÞ rg

2r sin2 θ
2

× eikrg ln sin
2θ
2
þ2iσ0eikðrþrg ln 2krÞ−iωt þOðr2gÞ;

ð49Þ

Bsðt; rÞ ¼ E0

�
1þ rg

2r

�
ð0; sinϕ; cosϕÞ rg

2r sin2 θ
2

× eikrg ln sin
2θ
2
þ2iσ0eikðrþrg ln 2krÞ−iωt þOðr2gÞ;

ð50Þ

where σ0 is the quantity known in nuclear physics as
the Coulomb phase shift σ0 ¼ argΓð1 − ikrgÞ. It is defined
via the ratio of two gamma function terms in (25):
Γð1 − ikrgÞ=Γð1þ ikrgÞ ¼ e2iσ0 .
These expressions complete our description of the

scattering problem in the geometric optics. In the next
section, we use these results to derive the Poynting vector
that characterizes energy transmission in this situation.

F. Poynting vector in the geometric optics
approximation

We may now compute the components of the Poynting
vector in geometric approximation using the solutions for
the incident and scattered waves. The components of the
Poynting vector are computed as ususal [31,57]:
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S ¼ c
4π

1ffiffiffiffiffiffi
g00

p ½E ×H� ¼ c
4πu

½ðReDÞ × ðReBÞ�; ð51Þ

where D ¼ Dinc þ Ds and B ¼ Binc þBs are the total
solutions for the EM field that includes incident and
scattered waves. Thus, for (51) we have

S ¼ Sinc þ Ss þ S×; ð52Þ
where Sinc ¼ ðc=4πuÞ½ReðDincÞ × ReðBincÞ� is the
Poynting vector due to the incident wave, Ss ¼
ðc=4πuÞ½ReðDsÞ × ReðBsÞ� is that due to the scattered
wave, with S× ¼ ðc=4πuÞð½ReðDincÞ × ReðBsÞ� þ
½ReðDsÞ × ReðBincÞ�Þ being the interferometric or mixed
term. Using the expressions for the incident and scattered
fields given by (40)–(41) and (49)–(50), correspondingly,
we may compute all the terms on the right-hand side of
(52). Then, after averaging (52) over time, we get the
needed expressions. Thus, for the Poynting vector of the
incident wave with (40)–(41) we have

S̄inc ¼ c
8π

uE2
0κþOðr2gÞ: ð53Þ

As expected, the incident wave propagates along the
wave vector κ, which is given by (35). Using expressions
(49)–(50), we compute the Poynting vector for the scattered
EM wave as

S̄s ¼ c
8π

uE2
0

�
rg

2rsin2 θ
2

�
2

nþOðr3gÞ: ð54Þ

Note that this term is below our approximation threshold of
Oðr2gÞ and thus it may be omitted. However, it provides
information on the largest contribution from the scattered
term alone. Note that if, for a particular value of r, the
angle θ decreases to the point where the ratio rg=2r sin2

θ
2

becomes 1, the term (54) is of the same size as (53). If θ
continues to decrease, the interferometric term in (52) also
becomes significant. We derive this term next.
Before we derive an expression for S×, it is instructive to

represent σ0 in (49)–(50) in terms of its functional depend-
ence. For this, we need to evaluate the ratio of two gamma
functions in (24). To do that, we will use Stirling’s formula
that approximates the gamma function for large values of its
argument jαj → ∞ (e.g., [55]):

ΓðαÞ ¼
ffiffiffiffiffiffi
2π

α

r �
α

e

�
α

ð1þOðα−1ÞÞ: ð55Þ

As a result, we have

e2iσ0 ¼ Γð1 − ikrgÞ
Γð1þ ikrgÞ

¼ e−2ikrg lnðkrg=eÞ−iπ2ð1þOððkrgÞ−1ÞÞ:

ð56Þ

Therefore, to a sufficient accuracy, for large values of the
argument jαj ¼ krg (i.e., when considering the propagation
of high frequency EM waves), the quantity σ0 may given as
2σ0 ¼ −2krg lnðkrg=eÞ − π

2
. This allows us to compute the

interference term and present it in the following form:

S̄× ¼ c
8πu

E2
0

rg
2rsin2 θ

2

sin

�
2krsin2

θ

2
− 2krg ln

rge−1

2rsin2 θ
2

�

×

�
îrð1þ cosθÞ− îθ sinθ

�
1þ rg

2rsin2 θ
2

��
þOðr2gÞ;

ð57Þ

where the second term in the argument of sinðÞ comes both
from σ0 and from the argument of the exponent in the
expression (25) for the scattering amplitude, fðθÞ. One can
see that pretty much for every value of r and θ the Poynting
vector of the incident wave S̄inc (53) dominates the inter-
ference term S̄× (57). However, when θ becomes smaller,
the interference term starts to grow. If, for a particular r,
the ratio rg=2r sin2

θ
2
approaches 1, the magnitude of S̄×

becomes comparable to that of S̄inc, reaching the value of
S̄×¼ðc=4πu2ÞE2

0 sin3krgfîr− îθ
ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p gþOðr2gÞ. If θ
continues to decrease, i.e., when θ → 0, the terms represent-
ing the scattered (54) and interferometric (57) terms continue
to grow, and ultimately diverge on the optical axis, where
θ ¼ 0. This is precisely the area where geometric optics
breaks down, necessitating a wave-theoretical treatment. We
develop that treatment in Sec. III.

G. Boundary conditions in the geometric
optics approximation

Lastly, we note that to develop a solution to a diffraction
problem, we need to introduce a set of boundary con-
ditions. These conditions are necessary to select specific
values for the arbitrary integration constants that are
appropriate for a particular problem under consideration.
Considering the case of diffraction of the EM wave by the
gravitational field of a large star (i.e., an idealized spherical
sun with no luminosity and no corona), we need to consider
only two of such conditions: (i) the asymptotic boundary
conditions and (ii) the physical boundary conditions (as
was done, for instance, in [58,59]).
As far as the asymptotic boundary condition is con-

cerned, we already introduced such a condition when we
selected the value for the constant ψ0 in (20) in the form of
(22). This choice was made to satisfy the condition that at
large distances from the deflector the incident wave must
resemble the Coulomb-modified plane wave with a unit
magnitude (i.e., Gamow conditions), but scaled to match
the field intensity at the source, namely limkðr−zÞ→∞ψψ

� ¼
E2
0. This condition led to the solutions for both incident

and scattered waves, given by (40)–(41) and (49)–(50),
correspondingly.
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However, the solutions for the EM waves that we
established describe scattering on an object that is charac-
terized only by its Schwarzschild radius, rg. This may be
sufficient for the problems describing scattering of massless
scalar waves by black holes (e.g., [56,60–62]), but is not
enough to describe scattering by the Sun, whose physical
size is much larger than its Schwarzschild radius, i.e.,
R⊙ ≫ rg. Therefore, following [59] we introduce another
requirement that our solution must to satisfy: the fully
absorbing boundary condition. This condition requires that
for rays with impact parameter less than the solar radius,
i.e., b0 ≤ R⊙, no wave propagates behind the Sun and no
diffracted wave exists. In the geometric optics approxima-
tion this condition introduces the shadow behind the Sun,
determines its shape, and moves the interference region to
heliocentric distances beyond z0 ¼ 547.8 A:U: (i.e., the
point where two gravitationally deflected rays of light that
are just grazing the Sun on its opposite sides will intersect.)
Both of these boundary conditions are useful and will

take an explicit analytical form in the case of the wave
optics treatment of the scattering of an EM wave by the
gravitational field of a large star that we discuss next.

III. ELECTROMAGNETIC WAVE IN THE
FIELD OF A STATIC MONOPOLE

In the previous section, we obtained all the tools that are
required to investigate the EM field in the interference zone
of the SGL. Our next goal is to find a solution to the EM
field in that region. In this section, we accomplish this
objective using the approach developed for classical dif-
fraction theory, by finding the set of equations that
determine the EM field via Debye potentials and then
matching these equations with the incident wave.

A. Representing the field in terms of Debye potentials

It is known [37,63,64] that Maxwell’s equations can be
represented in terms of the electric Debye potential eΠ
and the magnetic Debye potential mΠ. This also applies to
the case of an EM wave propagating in the static gravi-
tational field of a Schwarzschild black hole or a large star
[58,59,65]. In Appendix E we demonstrate how such a
representation may be done for the EM wave propagating
in the vacuum in the background of a weak and static
gravitational field, represented by the metric (1)–(2), which
is a good approximation for the gravitational field in the
solar system. The complete solution for the EM field may
be given as [see (E28)–(E33) for details]:

D̂r ¼
1

u

� ∂2

∂r2
�
reΠ
u

	
þ
�
k2u4 − u

�
1

u

�00��reΠ
u

	�
;

B̂r ¼
1

u

� ∂2

∂r2
�
rmΠ
u

	
þ
�
k2u4 − u

�
1

u

�00��rmΠ
u

	�
; ð58Þ

D̂θ ¼
1

u2r
∂2ðreΠÞ
∂r∂θ þ ik

r sin θ
∂ðrmΠÞ
∂ϕ ;

B̂θ ¼ −
ik

r sin θ
∂ðreΠÞ
∂ϕ þ 1

u2r
∂2ðrmΠÞ
∂r∂θ ; ð59Þ

D̂ϕ ¼ 1

u2r sin θ
∂2ðreΠÞ
∂r∂ϕ −

ik
r
∂ðrmΠÞ

∂θ ;

B̂ϕ ¼ ik
r
∂ðreΠÞ
∂θ þ 1

u2r sin θ
∂2ðrmΠÞ
∂r∂ϕ : ð60Þ

This solution can be derived from the two potentials
eΠ and mΠ, which both have to satisfy the same differ-
ential equation (E23), which is just the wave equation
[see (E26)]:

�
Δþ k2

�
1þ 2rg

r

���
Π
u

	
¼ Oðr2gÞ; ð61Þ

where Π can be either eΠ or mΠ. Typically [37], in
spherical polar coordinates (see Fig. 1 for details), the
solution of this equation is represented using an expan-
sion, with terms in the form

ΠðrÞ ¼ u
r
RðrÞΘðθÞΦðϕÞ; ð62Þ

and with coefficients that are determined by boundary
conditions. Direct substitution into (E22) reveals that the
functions R, Θ and Φ must satisfy the following ordinary
differential equations:

d2R
dr2

þ
�
k2
�
1þ 2rg

r

�
−

α

r2

�
R ¼ Oðr2g; r−3Þ; ð63Þ

1

sinθ
d
dθ

�
sinθ

dΘ
dθ

�
þ
�
α−

β

sin2θ

�
Θ¼Oðr2g;r−3Þ; ð64Þ

d2Φ
dϕ2

þ βΦ ¼ Oðr2g; r−3Þ: ð65Þ

The solution to (65) is given as usual [37]:

ΦmðϕÞ ¼ e�imϕ → ΦmðϕÞ ¼ am cosðmϕÞ þ bm sinðmϕÞ;
ð66Þ

with β ¼ m2, with m being an integer number and am and
bm are integration constants.
Equation (64) is well known for spherical harmonics.

Single-valued solutions to this equation exist when α ¼
lðlþ 1Þ with (l > jmj, integer). With this condition, the
solution to (64) becomes
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ΘlmðθÞ ¼ PðmÞ
l ðcos θÞ: ð67Þ

Now we focus on the equation for the radial function
(63), which may be rewritten as

d2Rl

dr2
þ
�
k2
�
1þ 2rg

r

�
−
lðlþ 1Þ

r2

�
Rl ¼ Oðr2g; r−3Þ:

ð68Þ

This second-order differential equation has two well-
known solutions that are linearly independent: the regular
function Flðkrg; krÞ and the irregular functionGlðkrg; krÞ.
A regular function is so named because it is zero at r ¼ 0.
Any solution to (63) may be chosen as a linear combination
of these two functions [45,66]:

RlðrÞ ¼ clFlðkrg; krÞ þ dlGlðkrg; krÞ; ð69Þ

where Fl and Gl are the Coulomb functions (discussed in
Appendix D) and cl and dl are arbitrary constants.
According to (62), a particular integral Πi is obtained by

multiplying together the functions given by (66), (67) and
(69); we then obtain a general solution to (E22). Collecting
results for ΦðϕÞ, ΘðθÞ and RðrÞ, given by (66), (67), and
(69), to the order ofOðr2gÞ, the Debye potential has the form

Π ¼ u
r

X∞
l¼0

Xl

m¼−l
½clFlðkrg; krÞ þ dlGlðkrg; krÞ�

× ½PðmÞ
l ðcos θÞ�½am cosðmϕÞ þ bm sinðmϕÞ�; ð70Þ

where cl, dl, am, bm are arbitrary and yet unknown
constants.
We must now determine these constants in such a way as

to satisfy the boundary conditions. For this to be possible,
one must be able to express the potentials eΠðiÞ and mΠðiÞ of
the incident wave in a series of the from (70).
To proceed with the solution of the scattering problem,

we consider the incident wave given by (40)–(41). Its
properties should give us the partial wave amplitudes cl
and dl in (70). To do this may not be straightforward,
because these fields are singular at θ ¼ 0 and cannot be
written in terms of Legendre polynomials P1

nðcos θÞ at all.
To determine eΠ or mΠ, we use Eqs. (40)–(41) that

describe the incoming wave and substitute them into
(E28)–(E33). For example, for Dr Eq. (40) yields

D̂inc
r ¼ −E0

cosϕ
iukr

∂ψ iðrÞ
∂θ e−iωt; ð71Þ

where ψ iðrÞ is the incident scalar wave (23). Together with
(58) [or the first part of (E28)], after omitting the e−iωt

factor, we obtain

− E0

cosϕ
iukr

∂ψ iðrÞ
∂θ

¼ 1

u

� ∂2

∂r2
�
reΠ
u

	
þ
�
k2u4 − u

�
1

u

�00��reΠ
u

	�
: ð72Þ

Our first problem, therefore, is to find an electromagnetic
field, which for r → ∞; θ ∼ π has the same asymptotic
behavior as the incident field given in (40), but which is
regular everywhere, for all values of θ and r. Instead of
using only a partial asymptotic solution representing the
incident wave, ψ iðrÞ, this field can be constructed using
the full solution given by (20) and (22), for which (23)
represents one of its asymptotic limits when r → ∞:

ψðrÞ ¼ ψ0eikz1F1ðikrg; 1; ikðr − zÞÞ;
where ψ0 ¼ E0e

π
2
krgΓð1 − ikrgÞ: ð73Þ

We may extend this to find the solution for the EM field in
all regions by taking, instead of ψ iðrÞ, the entire solution
for ψ from (73). Equation (72) indicates that

−
cosϕ
ikr

∂ψ
∂θ ¼ ∂2

∂r2
�
reΠ
u

	
þ
�
k2u4 − u

�
1

u

�00��reΠ
u

	
ð74Þ

is a suitable definition of the wanted regular field [58,59].
The exact solution for Dr based on (73) should differ
from the incident wave (40) only for outgoing waves; the
amplitudes of the incoming waves should be equal.
The function ψ on the left-hand side of this equation may

be expressed in the form of a differentiable series of
Legendre polynomials [37,45]:

ψðrÞ ¼ 1

kr

X∞
l¼0

ilð2lþ 1ÞeiσlFlðkrg; krÞPlðcos θÞ; ð75Þ

whereFl is the Coulomb function discussed in Appendix D.
This representation is analogous to the following represen-
tation of a plane wave ψ0ðrÞ ¼ eikz, given as

ψ0ðrÞ ¼
X∞
l¼0

ilð2lþ 1ÞjlðkrÞPlðcos θÞ; ð76Þ

where jlðkrÞ is the spherical Bessel function given by
(D22). Note, when rg → 0, one may see from (D20) that
function ψ0ðrÞ is the limit of ψðrÞ.
Using (76) and the identities

∂
∂θPlðcos θÞ ¼ −Pð1Þ

l ðcos θÞ; Pð1Þ
0 ðcos θÞ ¼ 0; ð77Þ

we can write the left-hand side of (74) as
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−
cosϕ
ikr

∂ψ
∂θ ¼

cosϕ
ik2r2

X∞
l¼1

ilð2lþ1ÞeiσlFlðkrg;krÞPð1Þ
l ðcosθÞ:

ð78Þ

This expression allows us to present a trial solution for eΠ
as a series of a form similar to (78), to order Oðr2gÞ:

eΠ ¼ 1

r
u
k2

X∞
l¼1

μlFlðkrg; krÞPð1Þ
l ðcos θÞ cosϕ: ð79Þ

Considering the asymptotic expansion of (79), we can
substitute (78) and (79) into (74). Remembering that Fl
satisfies (68) and comparing coefficients, we obtain the
relation

μl ¼ E0il−1
2lþ 1

lðlþ 1Þ e
iσl : ð80Þ

The calculations for the magnetic potential, mΠ, are
similar. In fact, in the vacuum, the solutions for the electric
and magnetic potentials of the incident wave, eΠ and mΠ,
may be given in terms of a single potential Πðr; θÞ as
� eΠ

mΠ

�
¼

�
cosϕ

sinϕ

�
Πðr; θÞ; where

rΠðr; θÞ ¼ E0

u
k2

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσlFlðkrg; krÞ

× Pð1Þ
l ðcos θÞ þOðr2gÞ: ð81Þ

Therefore, by matching the general form for the Debye
potentials (70) to the incident EM wave (75), we see that
Maxwell’s equations (58)–(60) can only be satisfied by
selecting cl ¼ 1 and dl ¼ 0, and also by choosing m ¼ 1,
with a1 ¼ 0 for the magnetic potential, and b1 ¼ 0 for the
electric potential. Thus, we have expressed both Debye
potentials of the incident wave, eΠ and mΠ, in the form of
the series (70) by determining all the unknown constants.
As a result, (81) represents an exact vacuum solution via
Debye potentials for the EM field scattered by a gravita-
tional monopole.
In the background of the metric (1), with u from (17),

the general solution of Maxwell’s equations (7)–(8) that
corresponds to a monochromatic wave with the symmetry
of a plane wave can be given in terms of a functionΠ, given
by (81). Using this result in Eqs. (58)–(60) with the help of
(E28) we see that, in order to obtain the components of the
EM field in a vacuum, we need to construct the following
expressions [59]:

αðr; θÞ ¼ −
1

u2r2
∂
∂θ

�
1

sin θ
∂
∂θ ½sin θðrΠÞ�

	
; ð82Þ

βðr; θÞ ¼ 1

u2r
∂ðrΠÞ
∂r∂θ þ ikðrΠÞ

r sin θ
; ð83Þ

γðr; θÞ ¼ −
1

u2r sin θ
∂ðrΠÞ
∂r −

ik
r
∂ðrΠÞ
∂θ ; ð84Þ

and insert them into

�
D̂r

B̂r

�
¼

�
cosϕ

sinϕ

�
e−iωtαðr; θÞ;

�
D̂θ

B̂θ

�
¼

�
cosϕ

sinϕ

�
e−iωtβðr; θÞ;

�
D̂ϕ

B̂ϕ

�
¼

�
sinϕ

− cosϕ

�
e−iωtγðr; θÞ: ð85Þ

This completes the solution for the EM field in a
vacuum in the background of a spherically symmetric,
static gravitational field represented by its Schwarzschild
radius. However, the Sun has a physical boundary with a
radius that is much larger than rg. To account for this fact,
we need to apply the fully absorbing boundary condition,
as discussed in Sec. II G.

B. Boundary conditions

As we discussed in Sec. II G, the physical size of the Sun
necessitates a proper treatment. Usually, this is done by
selecting a form of the Debye potential for each of the
regions in question, imposing the relevant boundary con-
ditions, and matching the potentials on the boundary. We
will follow a similar approach. First we note that, in order to
match the potentials (81) to those of the incident and
scattered waves, the latter must be expressed in a similar
series form but with arbitrary coefficients. Only the
function Flðkrg; krÞ may be used in the expression for
the potential, since Glðkrg; krÞ is divergent at the origin.
On the other hand, the scattered wave must vanish at
infinity and the Hankel functions, Hþ

l ðkrg; krÞ (see
Appendix D 2 for a discussion of the Hankel and
Coulomb functions, their relationships and their relevant
properties), will impart precisely this property. This func-
tion is suitable as a representation of the scattered wave. For
large values of the argument ðkrÞ, it behaves as eikðrþrg ln 2krÞ

and the Debye potential will satisfy Π ∝ eikðrþrg ln 2krÞ=r for
large r. Thus, for distances r ≫ rg, the diffracted wave is
spherical, with its center at the origin r ¼ 0. Accordingly, it
will be used in the expression for the diffracted wave:

rΠðsÞ ¼ E0

u
k2

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσlalH

þ
l ðkrg; krÞ

× Pð1Þ
l ðcos θÞ þOðr2gÞ: ð86Þ
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To select the arbitrary coefficients al we will use the
fully absorbing boundary condition discussed in Sec. II G.
For this, we first consider the effective potential in Eq. (68)
for the radial function Rl. We notice that a transition from
small-ðkrÞ power law behavior to large-ðkrÞ oscillatory
behavior occurs outside the classical turning point, which is
the point where the effective potential in (68) vanishes,
namely 1þ 2rg=r − lðlþ 1Þ=ðkrÞ2 ¼ Oðr2gÞ. Solving this
quadratic equation, we determine the turning point

rt ¼ −rg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2g þ lðlþ 1Þ=k2

q
: ð87Þ

As r is positive, then with purely Newtonian (or, in nuclear
scattering, Coulomb) and centrifugal potentials (68) there is
only one turning point corresponding to the þ sign in (87).
Classically, the turning point is at the distance of closest
approach or at the impact parameter. These quantities
are related in the same manner as the classical impact
parameter b0 is related to the quantum mechanical partial
wave l [52,66]:

kb0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
≈ lþ 1

2
: ð88Þ

To set the boundary conditions, we realize that rays with
impact parameter b0 ≤ R⊙ are absorbed by the Sun. Thus,
the fully absorbing boundary condition signifies that all
the radiation intercepted by the body of the Sun is fully
absorbed by it and no reflection or coherent reemission
occurs. All intercepted radiation will be transformed into
some other forms of energy, notably heat. Thus, we require
that no scattered waves exist with impact parameter
b0 ≪ R⊙ or, equivalently, for l ≤ kR⊙ It means that we
need to subtract the scattered wave (86) from the incident
wave for l ≤ kR⊙. In other words, to derive the solution
for the Debye potential ΠðIÞ in the region outside the Sun
(denoted by Latin superscript I), we set al ¼ −1 in the
expression for the scattering potential ΠðsÞ given by (86)
and add to the expression forΠinc from (81). This results in

rΠðIÞðr; θÞ ¼ E0

u
k2

X∞
l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσlFlðkrg; krÞ

× Pð1Þ
l ðcos θÞ − E0

u
k2

XkR⊙

l¼1

il−1
2lþ 1

lðlþ 1Þ
× eiσlHþ

l ðkrg; krÞPð1Þ
l ðcos θÞ þOðr2gÞ: ð89Þ

This is the second asymptotic boundary condition which is
set on the “future infinity” light cone and deals with the fact
that the physical boundary of the Sun is much larger than its
Schwarzschild radius, R⊙ ≫ rg. This is in addition to the
earlier condition that was established in “past infinity,” to
fix the value for ψ0 in (73).

We have thus obtained the Debye potential representing
the total solution for the problem of diffraction of EM
waves by a large spherical star. Solution (89) describes the
EM field outside the Sun, which is our primary interest, and
which we discuss next.

C. Exact solution for the Debye potentials

We observe that, in addition to the solution for the Debye
potential in the form of the infinite series of partial waves
(81), in a vacuum there exists an exact analytical solution
for this quantity. To demonstrate this, we use the wave
equation (E23) written in the spherical coordinate system
and present the expression for Dr via derivatives with
respect to θ, as it was originally obtained in (E21) and
shown in (E28), ultimately leading to (82). Then, from the
two expressions for Dr given by (85) and also by (74) with
the expð−ωtÞ term reinstated, we obtain

D̂r ¼ −e−iωt
cosϕ
u2r2

∂
∂θ

�
1

sin θ
∂
∂θ ½sin θðrΠÞ�

	

¼ −e−iωt
cosϕ
iukr

∂ψ
∂θ : ð90Þ

As a result, (90) yields the following equation to determine
the Debye potential Π:

∂
∂θ

�
1

sin θ
∂
∂θ ½sin θΠ�

	
¼ −

iu
k
∂ψ
∂θ þOðr2gÞ: ð91Þ

We may now integrate this equation with respect to θ to
obtain

∂
∂θ ½sin θΠ� ¼ −

iu
k
sin θ½ψðr; θÞ þ cðrÞ� þOðr2gÞ; ð92Þ

where cðrÞ is the integrating constant. Integrating again
from π to θ, we have

ΠðrÞ ¼ −
iu
k

1

sin θ

Z
θ

π
½ψðr; θ0Þ þ cðrÞ� sin θ0dθ0 þOðr2gÞ:

ð93Þ

Using (73) for ψ and relying on the properties of the
hypergeometric function from Appendix C, especially
(C4), we can evaluate the integral:

ΠðrÞ ¼ −ψ0

iu
k
1− cosθ
sinθ

eikzð1F1½1þ ikrg;2; ikrð1− cosθÞ�

− 1F1½1þ ikrg;2;2ikr�Þ þ
iu
k
1þ cosθ
sinθ

ðcðrÞ
þψ0e−ikr1F1½1þ ikrg;2;2ikr�Þ þOðr2gÞ: ð94Þ

By taking the integration constant to be
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cðrÞ ¼ −ψ0e−ikr1F1½1þ ikrg; 2; 2ikr� þOðr2gÞ; ð95Þ

we obtain the following expression for the Debye potential:

ΠðrÞ ¼ −ψ0

iu
k
1− cosθ
sinθ

eikzð1F1½1þ ikrg;2; ikrð1− cosθÞ�
− 1F1½1þ ikrg;2;2ikr�Þ þOðr2gÞ; ð96Þ

which gives us the Debye potential of the incident wave
in terms of the Coulomb wave function ψ , i.e., essentially
in terms of the confluent hypergeometric function
[58,59]. This solution is always finite and is valid for
any angle θ.
As a result, the solution (96) for the Debye potential

allows us to replace the first term in (89) and rewrite it as

ΠðIÞðr; θÞ ¼ −ψ0

iu
k
1 − cos θ
sin θ

eikzð1F1½1þ ikrg; 2; ikrð1 − cos θÞ� − 1F1½1þ ikrg; 2; 2ikr�Þ

− E0

u
k2

1

r

XkR⊙

l¼1

il−1
2lþ 1

lðlþ 1Þ e
iσlHþ

l ðkrg; krÞPð1Þ
l ðcos θÞ þOðr2gÞ: ð97Þ

This is our main result. It contains all the information
about the EM field around the Sun in all the regions of
interest for the diffraction problem (see Fig. 4). We will
evaluate the terms in this expression for each of these
regions.

D. Solution to the diffraction problem
and different regions

In order to understand the solution (97) that we obtained,
we need more information on the second term in this
expression. Considering the region outside the Sun, r ≫ rg,
we may replace Hþ

l ðkrg; krÞ with its asymptotic expansion
(D16). Extending it to distances closer to the turning point,
as derived in Appendix F and shown in (F16), we obtain

δðΠðIÞÞ ¼ −E0

u
k2

1

r
eikðrþrg ln 2krÞ

XkR⊙

l¼1

il−1
2lþ 1

lðlþ 1Þ
× eið2σl−πl

2
þlðlþ1Þ

2kr ÞPð1Þ
l ðcos θÞ þOðr2gÞ: ð98Þ

Next, we use the asymptotic representation for

Pð1Þ
l ðcos θÞ from [35]:

Pð1Þ
l ðcos θÞ ¼ −lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πl sin θ
p

�
eiðlþ1

2
Þθþiπ

4 þ e−iðlþ1
2
Þθ−iπ

4

�

þO
�
l−3

2

�
for 0 < θ < π: ð99Þ

At this point, we may replace the sum in (98) with an
integral:

δðΠðIÞÞ ¼ E0

u
k2

1

r
eikðrþrg ln 2krÞ

Z
kR⊙

1

2lþ 1

lðlþ 1Þ
ð−iÞldlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πl sin θ

p

× eið2σlþ
lðlþ1Þ
2kr Þðeiðlþ1

2
Þθþiπ

4 þ e−iðlþ1
2
Þθ−iπ

4Þ þOðr2gÞ;
ð100Þ

and evaluate this integral by the method of stationary phase.
Note that the lower bound in this integral should be of the
size of the Einstein radius of the lens. However, taking into
account the physical dimensions of the Sun, such a detail is
insignificant. Expression (100) shows that the l-dependent
part of the phase has the structure:

φ�ðlÞ ¼ �
��

lþ 1

2

�
θ þ π

4

�
þ 2σl þ

lðlþ 1Þ
2kr

þOðr2gÞ:

ð101Þ

FIG. 4. Three different regions of space associated with a monopole gravitational lens: the shadow, the region of geometric optics, and
the region of interference.
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Therefore, the points of stationary phase where dφ�=dl ¼
0 are given by the following equation:

�θ ¼ 2 arctan
krg
l

−
2lþ 1

2kr
þOðr2gÞ; ð102Þ

with σl taken from expression (D10) where we formally
replaced the sum with an integral, namely

Pl
j¼1 →

R
l dj.

If we take l from the semiclassical approximation pre-
sented by (88), then for small angles θ, Eq. (102) yields
� sin θ ¼ 2rg=b0 − b0=rþOðr2gÞ. As a result, we see that
the points of stationary phase satisfy the equation

1

r
¼ � sin θ

b0
þ 2rg

b20
þOðr2gÞ: ð103Þ

The potential δðΠðIÞÞ from (100) contributes only if the
points of stationary phase are within the interval 0 ≤ θ ≤ π
and 1 ≤ l ≤ kR⊙. As the largest impact parameter in (103)
is set by the upper integration limit in (100), or bmax0 ¼ R⊙,
we see that this equation gives us the boundary of those
regions influenced by δðΠðIÞÞ. This equation allows for a
simple geometric and physical interpretation. We remember
that the classical scattering orbit in a Newtonian potential
is a hyperbola, described in polar coordinates ðρ; θ;ϕÞ,
starting at θ ¼ π, by [59,66]

1

ρðθÞ ¼
sin θ
b0

þ rg
2b20

ð1þ cos θÞ2; ð104Þ

which, based on the analysis in Appendix B 1, describes the
geodesic path of the photon in the gravitational field of a
monopole. From this, we see that the boundary in question
coincides with the rays that are just grazing the Sun in the
forward direction, 0 ≤ θ ≤ π

2
. Furthermore, for distances

z ≤ z0 ¼ R2⊙=2rg [derived from (103) with θ ¼ 0], one
needs to take the plus sign in (103) and for distances
beyond that point, z ≥ z0, the minus sign should be taken.
As a result, we established the boundary that separates

three regions of interest (see Fig. 4 for details), namely:
(i) For impact parameters b0 ≤ R⊙, the boundary condi-
tions establish the shadow behind the Sun where no light
from the source may appear. (2) Impact parameters larger
that the solar radius, b0 > R⊙, correspond to regions of
geometric optics where only one ray from a point source
could pass through each point. The solution for the EM
field in this region is given by the incident and scattered
waves (40)–(41) and (49)–(50), correspondingly. However,
as we discussed in Sec. II F, the scattered wave is negligibly
small everywhere in this region and offers practically no
contribution. (3) For distances beyond z0 ¼ R2⊙=ð2rgÞ, as
we approach the optical axis, θ → 0, we enter the inter-
ference region where, in the immediate vicinity of the
optical axis, the beam of extreme intensity is present.

Proper description of the EM field in this region requires a
wave-theoretical treatment, which we develop next.

E. The electromagnetic field in the region
of interference

We now consider the region of interference, i.e., the
region in the immediate vicinity of the optical axis, θ ≈ 0,
and at distances beyond z ≥ z0 ¼ R2⊙=ð2rgÞ, so that the
argument in (96) is small, namely krð1 − cos θÞ ≪ 1. We
realize that in this region the second term in (89) produces
no contribution and the EM field can be derived in its
entirety from (96) [59]. In addition, it can be shown by
direct computation that the second term enclosed in round
brackets in (96) can be neglected. The EM field and the
Poynting vector due to it are orders of magnitude [factor of
ðkrgÞ−1=2] smaller than those originating from the first term.
The second term is important only near the axis θ ¼ π
where it serves to avoid a singularity. Thus the task that
remains is the derivation of the Poynting vector of the field
given by

Π ¼ −ψ0

iu
k
1 − cos θ
sin θ

eikzF½2� þOðr2gÞ; ð105Þ

where, for convenience, and again following the logic of
[59], we introduced the notation

F½1� ¼ 1F1½ikrg; 1; ikrð1 − cos θÞ�;
F½2� ¼ 1F1½1þ ikrg; 2; ikrð1 − cos θÞ�: ð106Þ

As we remember, F½1� was first seen in (20) as a part of the
solution of the time-independent Schrödinger equation for
the scalar intensity of the EM wave, ψ . From (105) we see
that F½2� determines the properties of the Debye potential
that corresponds to that solution.
In Appendices C 2 and C 3 we discuss the properties of

these two functions and their behavior at small angles θ and
also at large distances. Using the asymptotic behavior of
F½2� at large values of argument kðr − zÞ ≫ 1 and ψ0 from
(73) and expressing z ¼ r cos θ, we compute the asymp-
totic behavior of the Debye potential Π from (105) as

Πðr; θÞ ¼ E0

u
k2r sin θ

�
eikðr cos θ−rg ln krð1−cos θÞÞ

−
Γð1 − ikrgÞ
Γð1þ ikrgÞ

eikðrþrg ln krð1−cos θÞÞ þO
�
ikr2g
r − z

��
:

ð107Þ

We can verify that the first term in (107) is the Debye
potential corresponding to the incident wave, while the
second term corresponds to the scattered wave. In fact, by
substituting (107) into (82)–(85), after some algebra, we
can see that the solution given by (107) yields results that
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are identical to the expressions for the incident and
scattered fields given by (40)–(41) and (49)–(50), obtained
earlier using a different approach. Therefore, the exact
solution for the Debye potential (105) may be used for any
region describing the EM field.
Using the solution for the Debye potential Π given by

(105), we may now compute all the quantities in (82)–(84):

αðr; θÞ ¼ 1

u
ψ0eikr cos θ sin θfF½1� − ikrgF½2�g þOðr2gÞ;

ð108Þ

βðr; θÞ ¼ 1

u
ψ0eikr cos θ

�
F½1�

�
cos θ −

i
kr

�
1 − cos θ
sin2θ

−
rg
2r

��

þ F½2� 1 − cos θ
sin2θ

�
1 − cos θ þ rg

r

þ ikrgsin2θ −
i
kr

rg
2r

cos θ

��
þOðr2gÞ; ð109Þ

γðr; θÞ ¼ −uψ0eikr cos θ
�
F½1�

�
1 −

i
kr

1 − cos θ
sin2θ

1

u2

�

þ F½2� 1 − cos θ
sin2θ

�
1 − cos θ −

rg
r
þ i
kr

rg
2r

��
þOðr2gÞ: ð110Þ

By taking the asymptotic behavior of F½1� and F½2� from
(C22) and (C26), correspondingly, together with ψ0 from
(73), substituting these into (108)–(110), and using the
results in (85), we can verify that at large distances our
solution gives the correct expression for each component of
the incident (40)–(41) and scattered (49)–(50) EM waves.
We can use the quantities (108)–(110) to compute the
resultant EM field.
The solution (108)–(110) is valid for any angle and

distance from the lens. However, for practical purposes, we
are interested only in the small region on the optical axis
just after the point where grazing rays intersect (see Fig. 4).
We established earlier that, in the post-Newtonian approxi-
mation, the trajectories of light rays are governed by
geodesic equations. These equations tell us that the focal
line along which rays of light grazing the Sun intersect
begins at z0 ¼ 547.8 A:U:. As was discussed in [59],
beyond that point, the solar gravitational monopole forms
a folded caustic (Fig. 5) that is characterized by a very high
density of the EM field along the focal line, or optical axis.
In the immediate vicinity of the optical axis ρ ≪ rg, the
caustic is in the shape of a pencil-sharp beam. This region
of the caustic, characterized by 0≲ θ ≪

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r

p
, is where

we direct our attention next.

F. Transformation to cylindrical coordinates

As argued in [59], for practical purposes it is convenient
to introduce a cylindrical coordinate system ðρ;ϕ; zÞ
instead of the spherical coordinates ðr; θ;ϕÞ. In the far
field, r ≫ rg, this can be done by defining R ¼ ur ¼
rþ rg=2þOðr2gÞ and introducing the coordinate trans-
formations ρ ¼ R sin θ, z ¼ R cos θ, which, from (1), yield
the line element:

ds2¼u−2c2dt2−ðdρ2þρ2dϕ2þu2dz2ÞþOðr2gÞ: ð111Þ

As a result, taking into account (85) and using the rules
of vector transformations between curvilinear coordinates
given by (A7), for the metric (111) we have the following
components of the EM field in cylindrical coordinates:

�
D̂ρ

B̂ρ

�
¼

�
cosϕ

sinϕ

�
e−iωtaðr; θÞ;

�
D̂z

B̂z

�
¼

�
cosϕ

sinϕ

�
e−iωtbðr; θÞ;

�
D̂ϕ

B̂ϕ

�
¼

�
sinϕ

− cosϕ

�
e−iωtγðr; θÞ; ð112Þ

where

aðr; θÞ ¼ u−1 sin θαðr; θÞ þ cos θβðr; θÞ; ð113Þ

bðr; θÞ ¼ cos θαðr; θÞ − u sin θβðr; θÞ: ð114Þ

Using (108)–(110) for α and β, for a high-frequency EM
wave [i.e., neglecting OððkrÞ−1Þ terms], we obtain

FIG. 5. Folded caustic formed by the SGL (not to scale). Left:
rays (thin straight lines) enveloping a cusped caustic and wave-
fronts, i.e., contours of travel time. Right: travel time contours as
on the left, but showing only for first arrival at a particular point.
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aðr; θÞ ¼ 1

u
ψ0eikz

�
F½1�

�
1 −

rg
2r

sin2θ

�
þ F½2�

�
1 − cos θ
sin2θ

cos θ

�
1 − cos θ þ rg

r

�
− ikrg

�
1 − cos θ −

rg
2r

sin2θ

���
þOðr2gÞ; ð115Þ

bðr; θÞ ¼ −
1

u
ψ0eikz sin θ

�
F½1� rg

2r
cos θ þ F½2�

�
1 − cos θ
sin2θ

u

�
1 − cos θ þ rg

r

�
þ ikrg

�
1þ rg

2r
ð1 − cos θÞ

���
þOðr2gÞ;

ð116Þ

γðr;θÞ¼−uψ0eikz
�
F½1�þF½2�1−cosθ

sin2θ

�
1−cosθ−

rg
r

��
þOðr2gÞ: ð117Þ

We will use these results to study the properties of the
EM field characterizing the diffraction of light by the SGL.

G. The electromagnetic field in the image plane

The components of the EM field in the cylindrical
coordinate system ðρ;ϕ; zÞ are given by (112)–(114)
with amplitudes given by (115)–(117). We note that at
large distances from the Sun, we may neglect the terms
∼rg=r leading, in particular, to D≃ EþOðrg=rÞ and
B≃HþOðrg=rÞ. Together with (115)–(117) and neglect-
ing OððkrÞ−1Þ and Oðrg=rÞ terms (i.e., keeping only the
largest terms), the physical components of the electric field
take the form

Êρ ¼ cosϕψ0

�
F½1� þ F½2�

�ð1 − cos θÞ2
sin2θ

cos θ

− ikrgð1 − cos θÞ
��

eiðkz−ωtÞ þOðr2gÞ; ð118Þ

Êϕ¼−sinϕψ0

�
F½1�þF½2�ð1−cosθÞ2

sin2θ

�
eiðkz−ωtÞ þOðr2gÞ;

ð119Þ

Êz ¼ − cosϕψ0 sinθ

�
F½2�

�ð1− cosθÞ2
sin2θ

þ ikrg

��
eiðkz−ωtÞ

þOðr2gÞ: ð120Þ

Similar expressions may be derived for the magnetic
field H. Furthermore, in the immediate vicinity of the
optical axis, ρ≲ rg, we may use approximations for the
functions F½1� and F½2� given by (C41)–(C42). For all
practical applications, we may neglect terms containing θ2,
not only because in the immediate vicinity of the optical
axis ρ≲ rg and, thus, θ is very small but, furthermore, the
Bessel functions at those distances ρ are also small. We are
then left with the following solution for the EM field in the
image plane:

�
Êρ

Ĥρ

�
¼

�
Ĥϕ

−Êϕ

�
¼ ψ0J0ð2

ffiffiffi
x

p Þ
�
cosϕ

sinϕ

�
eiðkz−ωtÞ;

�
Êz

Ĥz

�
¼ −ψ0

ikrgθffiffiffi
x

p J1ð2
ffiffiffi
x

p Þ
�
cosϕ

sinϕ

�
eiðkz−ωtÞ; ð121Þ

with x ¼ k2rrgð1 − cos θÞ. Expressing x in terms of cylin-
drical coordinates of (111) yields

2
ffiffiffi
x

p ¼ 2π
ρ

λ

ffiffiffiffiffiffiffi
2rg
z

r
þOðr2g; ρ3Þ: ð122Þ

Using this result and θ ¼ ρ=zþOðρ2=z2Þ, we can express
the ratio in the second term of (121) as

ikrgθffiffiffi
x

p ¼ i

ffiffiffiffiffiffiffi
2rg
z

r
þOðr2g; ρ2Þ: ð123Þ

These results allow us to present (121) in the form showing
explicit dependence on all variables involved:

�
Êρ

Ĥρ

�
¼
�

Ĥϕ

−Êϕ

�
¼ ψ0J0

�
2π

ρ

λ

ffiffiffiffiffiffiffi
2rg
z

r ��
cosϕ

sinϕ

�
eiðkz−ωtÞ;

�
Êz

Ĥz

�
¼−iψ0

ffiffiffiffiffiffiffi
2rg
z

r
J1

�
2π

ρ

λ

ffiffiffiffiffiffiffi
2rg
z

r ��
cosϕ

sinϕ

�
eiðkz−ωtÞ:

ð124Þ

Clearly, at the focal region of the SGL, when z ≥ z0 ¼
R2⊙=2rg ¼ 547.8 A:U:, the factor in front of the z compo-
nents of the EM field, Êz and Ĥz, is negligibly small. Thus,
both of these components may be neglected, leaving only
transverse components of the EM field on the image plane.
Solution (124) offers a good approximation for the EM

field within a pencil-sharp beam in the very narrow vicinity
of the optical axis, ρ≲ rg; it is also quite accurate even for
larger distances ρ ∼ 102rg. It shows that the EM field is
distributed narrowly in the immediate region of the optical
axis and falls off sharply as one moves away from it.
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H. The Poynting vector in cylindrical coordinates

To consider the imaging properties of the SGL, we need
to know the energy flux at the image plane, which is given
by the Poynting vector. Components of the Poynting vector
[31,57] are given by (52). To compute S in the cylindrical
coordinate system, we use (112)–(114) and (115)–(117),
and express the components of the Poynting vector as

S¼ c
4πu

fReðe−iωtγÞReðe−iωtbÞ;0;−Reðe−iωtγÞReðe−iωtaÞg:
ð125Þ

Averaging (125) over time and considering only high-
frequency EM waves [i.e., neglecting OððkrÞ−1Þ terms],
we get

S̄ρ ¼
c

8πu
ψ2
0 sin θ

�
F½1�F�½1� rg

2r
cos θ þ F½2�F�½2�

�
1 − cos θ
sin2θ

�
2

uð1 − cos θÞ2 þ 1

2
ðF½1�F�½2� þ F�½1�F½2�Þ

×
1 − cos θ
sin2θ

�
1 − cos θ þ rg

2r
sin2θ

�
−
1

2
iðF½1�F�½2� − F�½1�F½2�Þkrg þOðr2g; ðkrÞ−1Þ

�
; ð126Þ

S̄ϕ ¼ Oðr2g; ðkrÞ−1Þ; ð127Þ

S̄z ¼
c

8πu
ψ2
0

�
F½1�F�½1�

�
1 −

rg
2r

sin2θ

�
þ F½2�F�½2�

�
1 − cos θ
sin2θ

�
2

ð1 − cos θÞ2 cos θ þ 1

2
ðF½1�F�½2� þ F�½1�F½2�Þ

×

�
1 −

rg
2r

ð1 − cos θÞ
�
ð1 − cos θÞ þ 1

2
iðF½1�F�½2� − F�½1�F½2�Þkrgð1 − cos θÞ þOðr2g; ðkrÞ−1Þ

�
; ð128Þ

where the asterisk ð �Þ denotes the complex conjugate. All
properties of the diffraction field are encoded in these
formulas (126)–(128). As noted in [59], extracting these
properties is challenging because of the number of param-
eters that must be considered: the heliocentric distance z,
the distance ρ ¼ zθ from the axis θ ¼ 0 in the image plane,
the frequency of the wave ω and the telescope aperture.
Equations (C43)–(C44) allow us to present (126)–(128)

up to the terms of ∝ θ2:

S̄ρ ¼
c

8πu
ψ2
0 sin θ

�
J20ð2

ffiffiffi
x

p Þ rg
2r

þOðr2g; ðkrÞ−1; θ2Þ
�
;

ð129Þ

S̄ϕ ¼ Oðr2g; ðkrÞ−1Þ; ð130Þ

S̄z ¼
c

8πu
ψ2
0

�
J20ð2

ffiffiffi
x

p Þ
�
1 −

rg
2r

θ2
�

þ 1ffiffiffi
x

p J0ð2
ffiffiffi
x

p ÞJ1ð2
ffiffiffi
x

p Þ 1
2
θ2 þOðr2g; ðkrÞ−1; θ4Þ

�
:

ð131Þ

Using again the result (122) and θ ¼ ρ=zþOðρ2=z2Þ, we
can express the ratio in the second term of (131) as

1

2
ffiffiffi
x

p θ2 ¼ 1

2π

λρffiffiffiffiffiffiffiffiffiffiffi
2rgz3

q þOðr2g; ρ3Þ: ð132Þ

When a practical SGL is considered, this ratio is negligible.
Therefore, the second term in (131) may be omitted.
Next, we consider the constant ψ0 given by (73), for

which the following is valid: ψ2
0 ¼ E2

0e
πkrgΓð1 − ikrgÞ

Γð1þ ikrgÞ. Using the properties of the gamma function
[55], we have Γð1 − ikrgÞΓð1þ ikrgÞ ¼ πkrg=sinh πkrg,
which for ψ2

0 results in the following expression:

ψ2
0 ¼ E2

02πkrg=ð1 − e−2πkrgÞ: ð133Þ

Given the fact that in the focal region of the SGL, the
ratio rg=r ≪ 1 is very small, the terms in (129)–(131) that
include this ratio may also be omitted. As a result, using
(122) for the argument of the Bessel function, we can
present the components of the Poynting vector (129)–(131)
in the following most relevant form:

S̄z ¼
c
8π

E2
0

4π2

1 − e−4π
2rg=λ

rg
λ
J20

�
2π

ρ

λ

ffiffiffiffiffiffiffi
2rg
z

r �
; ð134Þ

with S̄ρ ¼ S̄ϕ ¼ 0 for any practical purposes. Note that in
the case when rg → 0, the Poynting vector reduces to its
Euclidean spacetime vacuum value, namely S̄ → S̄0 ¼
ð0; 0; ðc=8πÞE2

0Þ, which may de deduced from (53) by
taking rg ¼ 0. Note that in the limit λ=rg → 0, (134)
corresponds to the geometric optics approximation which
yields a divergent intensity of light on the caustic.
Result (134) completes our derivation of the wave-

theoretical description of light propagation in the
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background of a gravitational monopole. The result that we
obtained extends previous derivations that are valid only
on the optical axis (e.g., [16]) to the neighborhood of the
focal line and establishes the structure of the EM field in
this region. As such, it presents a useful wave-theoretical
treatment of focusing light by a spherically symmetric
mass, which is of relevance not only for the SGL discussed
here but also for microlensing by objects other than
the Sun.

IV. TOWARDS A SOLAR GRAVITATIONAL
TELESCOPE

We now have all the tools necessary to establish the
optical properties of the SGL in the region of interference,
i.e., at heliocentric distances z≥ z0¼R2⊙=2rg¼547.8A:U:
on the optical axis. First, given the knowledge of the
Poynting vector in the image plane (134), we may define
the monochromatic light amplification of the lens, μ, as the
ratio of the magnitude of the time-averaged Poynting vector
of the lensed EM wave to that of the wave propagating
in empty spacetime μ ¼ S̄=jS̄0j, with jS̄0j ¼ ðc=8πÞE2

0. The
value of this quantity is then given by

μz ¼
4π2

1 − e−4π
2rg=λ

rg
λ
J20

�
2π

ρ

λ

ffiffiffiffiffiffiffi
2rg
z

r �
: ð135Þ

As is evident from (134), we see that the largest amplifi-
cation of the SGL occurs along the z axis. The other
components of the Poynting vector are negligible.
We now consider the light amplification of the SGL in

the focal region. Figure 6 shows the resulting Airy pattern
(i.e., the point spread function or PSF) of the SGL from
(135). Due to the presence of the Bessel function of the
zeroth order, J20ð2

ffiffiffi
x

p Þ, the PSF falls off more slowly than
traditional PSFs, which are proportional to J21ð2

ffiffiffi
x

p Þ=x2, as
seen in Fig. 7. Thus, a non-negligible fraction of the total
energy received at the image plane of the SGL is present in

the side lobes of its PSF. This indicates that for image
processing purposes, one may have to develop special
deconvolution techniques beyond those that are presently
available (e.g., [24,25]), which are used in modern micro-
lensing surveys. Most of these techniques rely on raytrac-
ing analysis and typically are based on geometric optics
approximation.
Furthermore, the light amplification μ weakly depends

on the distance from the Sun. For practical purposes, it is
easier to show this property by plotting the gain of the SGL,
g, which is related to light amplification as gðλ; zÞ ¼
10 log10 μðλ; zÞ. Figure 8 plots the gain of the SGL at
two heliocentric distances z ¼ 600 A:U: and 1000 A.U. for
two wavelengths λ ¼ 1.0 μm and 2.0 μm.
We may express the argument of the Bessel function in

(135) in terms of the quantities of interest, namely the
heliocentric distance along the optical axis z, the distance in
the image plane ρ (as measured from the optical axis), and
the impact parameter b0. With the help of (122) we have

FIG. 6. Left: amplification and the corresponding Airy pattern of the SGL plotted for two wavelengths at the heliocentric distance of
z ¼ 600 A:U: The solid line represents λ ¼ 1.0 μm; the dotted line is for λ ¼ 2.0 μm. Right: a three-dimensional representation of the
Airy pattern in the image plane of the SGL for λ ¼ 1.0 μm with the peak corresponding to direction along the optical axis.

FIG. 7. Comparison of PSFs normalized to 1: the solid line
represents the PSF of the SGL, ∝ J20ð2

ffiffiffi
x

p Þ; the dotted line is for
the traditional PSF, ∝ J21ð2

ffiffiffi
x

p Þ=x2. Note that the first zero of the
PSF of the SGL is much closer in, but it falls out slower than the
traditional PSF.
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2
ffiffiffi
x

p ¼ 2π
ρ

λ

ffiffiffiffiffiffiffi
2rg
z

r

→ 2
ffiffiffi
x

p ¼ 2πα0
ρ

λ

ffiffiffiffiffi
z0
z

r
¼ 2πα0

ρ

λ

R⊙
b0

; ð136Þ

where α0 ¼ 2rg=R⊙ ¼ 8.490 × 10−6 rad ¼ 1.75100 is the
angle of deflection by the SGL for the light rays just
grazing the Sun. Given numerical values of various
quantities involved, we obtain

2
ffiffiffi
x

p ¼ 53.34
�
1 μm
λ

��
ρ

1 m

� ffiffiffiffiffi
z0
z

r
; ð137Þ

or, equivalently,

2
ffiffiffi
x

p ¼ 53.34

�
1 μm
λ

��
ρ

1 m

�
R⊙
b0

: ð138Þ

This result clearly shows the dependence of the SGL’s
light amplification on the observing wavelength, λ, the
distance along the focal line, z, and the distance from the
focal line in the image plane, ρ. The value of maximum
amplification of the SGL, μ0 ¼ 4π2rg=λ, is independent of
z. For optical wavelengths, this amounts to μ0 ∼ 1.2 × 1011,
giving the SGL its enormous light amplification. For small
deviations from the optical axis, the light amplification
(135) drops sharply, as seen in Fig. 6, but the overall
envelope decreases more slowly than that of a traditional
PSF (Fig. 7).
The ability of a lens to resolve detail is ultimately limited

by diffraction. Light coming from a point source diffracts
through the lens aperture, forming a diffraction pattern in
the image plane known as an Airy pattern (see Fig. 6). The
angular radius of the central bright lobe, called the Airy
disk, is measured from the center to the first null. Therefore,
we define the resolution of the SGL using the location
where J0ð2

ffiffiffi
x

p Þ ¼ 0, which is satisfied for the value of the
argument of 2

ffiffiffi
x

p
≈ 2.40483. We can then solve (136) for

θSGL ¼ ρ=z:

θSGL ≃ 0.766
λ

D⊙

ffiffiffiffiffi
z0
z

r
; or; equivalently;

θSGL ¼ 0.766
λ

D⊙
R⊙
b0

; ð139Þ

where D⊙ ¼ 2R⊙ is the solar diameter. For the wavelength
λ ¼ 1 μm, the resolution of the SGL at z0 ¼ 547.8 A:U: is
θ0≈5.50×10−16 rad¼0.11 nas. The resolution increases
with z as θ0

ffiffiffiffiffiffiffiffiffi
z0=z

p
as

θSGL ≃ 0.11

�
λ

1 μm

� ffiffiffiffiffi
z0
z

r
nas; or; equivalently;

θSGL ≃ 0.11

�
λ

1 μm

�
R⊙
b0

nas: ð140Þ

For an exoplanet situated at the distance zp from the
Sun, the angular resolution (139) translates into resolvable
surface features of δρSGL ¼ θSGLzp, which improves with
heliocentric distance as

δρSGL ≃ 510

�
zp

30 pc

��
λ

1 μm

� ffiffiffiffiffi
z0
z

r
m; or; equivalently;

δρSGL ≃ 510

�
zp

30 pc

��
λ

1 μm

�
R⊙
b0

m: ð141Þ

Depending on the impact parameter, the deflection angle
of the SGL is given as α ¼ 2rg=b0 ¼ α0ðR⊙=b0Þ. Rays
with impact parameter b0 will intersect the optical axis at
the distance of z ¼ b0=α ¼ 547.8ðb0=R⊙Þ2 A:U: In the
pencil-sharp region along the focal line the amplification
(135) of the SGL stays nearly constant well beyond
2500 A.U., while its angular resolution (140) increases
by a factor of ∼1=

ffiffiffi
5

p
in the same range of heliocentric

distances.
Across the image plane, the amplification oscillates quite

rapidly. For small deviations from the optical axis, θ ≈ ρ=z.

FIG. 8. Gain of the solar gravitational lens as seen in the image plane as a function of the optical distance z and observational
wavelength λ. On both plots, the solid line represents gain for z ¼ 600 A:U:, the dotted line is that for z ¼ 1000 A:U:.
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Using this relation in (140), we see that the first zero occurs
quite close to the optical axis:

ρSGL0 ≃ 4.5

�
λ

1 μm

� ffiffiffiffiffi
z
z0

r
cm; or; equivalently;

ρSGL0 ≃ 4.5

�
λ

1 μm

�
b0
R⊙

cm: ð142Þ

[Note in (142) the inverse ratio of z vs z0 and b0 vs R⊙.]
Equation (142) favors larger wavelengths and larger helio-
centric distances or, similarly, impact parameters.
Thus, we have established the basic optical properties of

the solar gravitational lens. By achromatically focusing
light from a distant source [17,34], the SGL provides a
major brightness amplification and extreme angular reso-
lution. Specifically, from (135) for λ ¼ 1 μm, we get a light
amplification of the SGL of μ≃ 1.2 × 1011, corresponding
to a brightness increase by δmag ¼ 2.5 ln μ ¼ 27.67 stellar
magnitudes in case of perfect alignment. Furthermore,
(140) gives us the angular resolution of the SGL
of θSGL ≃ 1.1 × 10−10 arc sec.
We note that if the diameter of the telescope d0 is larger

than the diffraction limit of the SGL (i.e., larger than the
diameter of the first zero of the Airy pattern), it would
average the light amplification over the full aperture. Such
an averaging will result in the reduction of the total light
amplification. To estimate the impact of the large aperture
on light amplification, we average the result (135) over the
aperture of the telescope:

μ̄z ¼
4

πd20

Z d0
2

0

Z
2π

0

μðρÞρd0ρd0ϕ

¼ 4π2

1− e−4π
2rg=λ

rg
λ

�
J20

�
π
d0
λ

ffiffiffiffiffiffiffi
2rg
z

r �
þ J21

�
π
d0
λ

ffiffiffiffiffiffiffi
2rg
z

r ��
:

ð143Þ

For an aperture of d0 ¼ 1 m at z ¼ 600 A:U:, this results
in the reduction in light amplification by a factor of
0.025, leading to the effective light amplification of μ̄z ¼
2.87 × 109 (i.e., 23.65 mag), which is still quite significant.
The effect of the large aperture is captured in Fig. 9, where
we plot the behavior of each of the two terms in curly
braces in (143) and also their sum. Although each term
oscillates and reaches zero, their sum never becomes zero.
As seen from a telescope at the SGL, light from a distant

target fills an annulus at the edge of the Sun, forming the
Einstein ring. At a distance z on the focal line, an observer
looking back at the Sun will see the Einstein ring with an
angular size that is given by αER ¼ 2b0=z ¼ 4rg=b0. Using
this equation, we determine the angular size of the ring as

αER ≃ 3.5000
ffiffiffiffiffi
z0
z

r
; or; equivalently; αER ≃ 3.5000

R⊙
b0

:

ð144Þ
A telescope with aperture d0, placed at the heliocentric
distance z on the optical axis, receives light from a family
of rays with different impact parameters with respect
to the Sun, ranging from b0 to b0 þ δb0. Using (144),
these rays are deflected by different amounts given as α1 ¼
ðb0 þ 1

2
d0Þ=z ¼ α0R⊙=ðb0 þ 1

2
d0Þ, for one edge of the

aperture, whereα0¼2rg=R⊙, andα2¼ðb0þδb0− 1
2
d0Þ=z¼

α0R⊙=ðb0þδb0− 1
2
d0Þ, for the other edge. Taking the ratio

of α2=α1, we can determine the relation between δb0 and
the telescope diameter, d0, which, to first order, is given
as δb0 ¼ d0.
As a result, the area of the Einstein ring that is seen

by the telescope with aperture d0, to first order, is given
by AER ¼ πððb0 þ δb0Þ2 − b20Þ≃ 2πb0d0. For different
impact parameters the area behaves as

AER ≃ 4.37 × 109
�

d0
1 m

�
b0
R⊙

m2: ð145Þ

Therefore, the magnifying power of a 1 m telescope placed
at heliocentric distance z on the focal line of the SGL is
equivalent to a telescope with diameter ofD ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2b0d0

p ¼
74.6ðb0=R⊙Þ12 km or, in terms of the heliocentric distances,
it is given as D ¼ 74.6ðz=z0Þ14 km, which is a weak
function of the observer’s position on the focal line.
To image an exoplanet, observing this annulus with

thickness of δb0 ¼ d0 is, of course, the primary objective.
A diffraction-limited 1 m telescope would have a resolution
of δθ ¼ λ=d0 ¼ 0.2100 at λ ¼ 1 μm. The thickness of the
Einstein ring from the heliocentric distance of z ¼
600 A:U: is d0=z ¼ 2.30 nas. Thus, although the thickness
of the Einstein ring is unresolved by the telescope at the
SGL, the ring itself is well resolved and can be used for
imaging purposes. In fact, the entire circumference of the

FIG. 9. Effect of a large aperture. The solid line shows the J20
term from (143), the dashed line is the J21 term, and the dot-
dashed line is their sum.
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ring at the same distance of z ¼ 600 A:U: has the length of
LER ¼ 2πb0=z ¼ 10.0500ðb0=R⊙Þ, and it is resolved with
LER=δθ ∼ 48.7ðb0=R⊙Þ resolution elements. Thus, the ring
could be used to provide information on a particular surface
area on the target exoplanet. By sampling various parts of
the ring, we will be able to collect data relevant to that
particular surface area on the exoplanet.
Considering the plate scale, an Earth-sized exoplanet at

zep ¼ 30 pc away from the Sun, when imaged from the
focal region of the SGL at heliocentric distance of z ∼
600 A:U:, has the image size of 2R⊕z=zep ∼ 1; 238 m
ðz=600 A:U:Þð30 pc=zepÞ. A single telescope would have
to traverse this area in the immediate vicinity of the focal
line to scan the image of the exoplanet. Such a scaling law
suggests that to image this object with ∼103 × 103 pixels,
the telescope would need to move in the image plane from
pixel to pixel, each of which has the size of ∼1.2 m. Each
surface element resolved on the surface of the exoplanet
would form its own Einstein ring around the Sun. However,
because of the properties of the PSF of the SGL (which has
prominent side lobes, as seen in Fig. 7), the total flux within
each Einstein ring corresponding to a particular surface
element would also have contributions (in the form of
Einstein arcs) from adjacent surface elements. Therefore,
to form a reliable image of an exoplanet’s topography,
multiple such images must be deconvoluted. This can be
accomplished as the properties of the Sun and, thus, of the
SGL are well understood.
Considering a realistic mission to the SGL to image a

preselected target, one would have to consider the effects of
the proper motion of the host star with respect to the Sun, as
well as orbital dynamics of the target exoplanet and its
diurnal rotation. Even if these factors are accounted for by a
trajectory design and raster scan in the image plane, the
exoplanet may also change as it is being scanned, due to
changes in illumination, seasonal changes, cloud cover, the
presence of one or more natural satellites and other factors;
therefore, image deconvolution must also take place in the
temporal dimension, possibly aided with reasonable mod-
els of periodic changes in appearance.
This interesting problem set must be addressed before

exoplanet imaging using the SGL can become reality.
Nonetheless, the potential benefits of a solar gravitational
telescope (SGT) are well considered in comparison with
the parameters of a comparable diffraction-limited optical
telescope. Given the very small angular diameter
(∼1.4 × 10−11 rad) of an Earthlike planet at 30 pc,
obtaining a single-pixel image would require a diffrac-
tion-limited telescope with an aperture of ∼74.6 km. To
match the magnifying power of the SGL and obtain an
image at a resolution of a thousand linear pixels, a telescope
aperture of 4 × 105 km (∼16R⊕) would be needed.
Building an optical imaging interferometer with such a
set of baselines is not feasible. At the same time, a mission
to the SGL offers access to unique conditions needed for

direct imaging of an exoplanet. Perhaps, it is the time we
start taking the SGL seriously.

V. DISCUSSION AND CONCLUSIONS

In this paper, we considered the propagation of EM
waves in the gravitational field of the Sun, which is
represented by the Schwarzschild monopole taken within
the first post-Newtonian approximation of the general
theory of relativity. We have developed a wave-theoretical
treatment for light diffraction in the field of a static
gravitational mass monopole and considered the case of
a monochromatic EMwave coming from a point source at a
large distance from the monopole. We obtained a solution
for the EM field everywhere around the lens and especially
in the immediate vicinity of its focal line, where the
geometric optics leads to diverging results. As anticipated,
because of wave effects in the focal region, our wave-
optical treatment is immune to singularities, allowing us to
describe the optics of the SGL and understand its image
formation properties. As such, in contrast to models based
purely on geometric optics, our approach allows us to
consider practical questions related to the design of a SGT,
in part by permitting the use of traditional tools of telescope
design. The results that we obtained allow us to compute
the PSF, resolution and FOV, as well as the evolution of
these quantities at various heliocentric distances along the
focal line. These will help improve our understanding of
the unique properties of the SGL for imaging and spectro-
scopic investigations.
Our presentation is streamlined, taking full advantage of

the weak-field gravity in the solar system. We also benefit
from the tools and techniques borrowed from nuclear
physics, specifically from the physics of scattering in a
Coulomb field. Our approach can be extended to include
higher-order solar gravity multipoles, if needed. We find
that the formalism for Coulomb scattering from the nuclear
physics literature is directly applicable. However, whereas
nuclear particle physics studies focus on the scattering of
scalar particles, we were able to develop the formalism
required to describe the scattering of a vector EM field
in the post-Newtonian approximation of the solar gravita-
tional field.
Our results represent the first step towards developing

a comprehensive theory of image formation by the SGL
and the tools needed for mission design, data collection
and processing, and ultimate image deconvolution
[14,15,26,27]. Several effects of gravitational and dynami-
cal areas will require further analysis. In particular, (1) dis-
tinguishing the bright solar disk from the annulus of an
Einstein ring, and the constraints it places on the perfor-
mance of the SGT; (2) effects due to the solar corona and
solar plasma on light propagation; (3) effects due to solar
oblateness and solar rotation on the spatial and temporal
properties of the caustic formed by the SGL; (4) effects of
reflex motion of the Sun with respect to the solar system’s
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barycentric coordinate reference system due to the presence
of the giant gaseous planets in the solar system; (5) effects
of proper motion of the exoplanet’s parent star, orbital
motion of the planet around the barycenter of its planetary
system, diurnal rotation of the planet, orientation of its
axis of rotation, precision and nutation; (6) item temporal
changes in the targeted planet’s appearance due to changing
illumination, varying cloud cover, changes in atmospheric
chemistry, varying surface features (ice cover, vegetation),
varying illumination by its host star, and eclipses due to any
satellites. Some of these aspects will be addressed in the
upcoming study of a mission to the SGL that is to be
conducted at the Jet Propulsion Laboratory [67]. The
results of this study will be available elsewhere.
Concluding, we emphasize that our present understand-

ing of the properties of the SGL and its value for imaging
and spectroscopy is about at the same level as we knew
gravitational waves back in the 1970s. At that time, the
physics of gravitational waves was already well under-
stood, but the technology needed for their detection was a
long way in the future. That “future” for the research in
gravitational waves came at the centennial of general
relativity with the results of the first direct detection of
the gravitational waves reported by the LIGO team [68]. It
is our hope and desire that by the theory’s sesquicentennial,
we will be in possession of a fully developed set of
technologies as well as the spacecraft, instruments, and data
analysis tools required to collect data and present us with
high-resolution imaging and spectroscopy of habitable exo-
planets, relying on the physics of the solar gravitational lens.
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APPENDIX A: THREE-DIMENSIONAL METRIC
AND (3 + 1) DECOMPOSITION

We summarize basic rules for vector transformations and
differential operators in curvilinear coordinates, for con-
venience, and also to introduce the notations used through-
out the present paper.
Following [31] (see Sec. 84), we consider a generic

interval and its 3þ 1 decomposition:

ds2¼gmndxmdxn¼
� ffiffiffiffiffiffi

g00
p

dx0þ
g0αffiffiffiffiffiffi
g00

p dxα
�

2

−καβdxαdxβ;

ðA1Þ

where the three-dimensional metric καβ is given as

καβ ¼ −gαβ þ
g0αg0β
g00

; κ ¼ det καβ: ðA2Þ

If gmn is diagonal, so is καβ. In the following, we assume
a diagonal metric. We consider the standard basis [35] with
unit basis vectors i1ðx1; x2; x3Þ, i2ðx1; x2; x3Þ, i3ðx1; x2; x3Þ
respectively directed along the coordinates x1, x2, x3. When
καβ is diagonal, these basis vectors form an orthonormal
basis (iα · iβ ¼ δαβ).
Components of a vector F in this basis are defined by

F̂α ¼ ðF · iαÞ (no summation), such that

F ¼ F̂1i1 þ F̂2i2 þ F̂3i3: ðA3Þ

We now form the covariant basis as

eα ¼
ffiffiffiffiffiffiffi
καα

p
iα ðno summationÞ; ðA4Þ

and the corresponding contravariant basis as

e1ðx1; x2; x3Þ ¼ e2 × e3
½e1e2e3�

;

e2ðx1; x2; x3Þ ¼ e3 × e1
½e1e2e3�

;

e3ðx1; x2; x3Þ ¼ e1 × e2
½e1e2e3�

; ðA5Þ

where ½abc� ¼ ða · ½b × c�Þ represents the vector triple
product.
We obtain the covariant components of a vector F as

Fα ¼ ðF · eαÞ and the contravariant components as
Fα ¼ F · eα. Consequently,

F̂α ¼
ffiffiffiffiffiffiffi
καα

p
Fα ¼ � 1ffiffiffiffiffiffiffi

καα
p Fα: ðA6Þ

The expressions to transform Fα from coordinates ξm
with Lamé coefficients hm to ξ0n with Lamé coefficients h0n
are given as (see Chapter 1.3 in [51])

F0
α ¼

X
β

γαβFβ; where
hβ
h0α

∂ξβ
∂ξ0α ¼ γαβ ¼

h0α
hβ

∂ξ0α
∂ξβ ; ðA7Þ

where for an orthonormal coordinate systems endowed
with the diagonal 3-metric καβ (A2), we have hα ¼ ffiffiffiffiffiffiffi

καα
p

.
The differential operators gradκψ ¼∇κψ , divκF¼ð∇κ ·FÞ,

curlκF ¼ ½∇κ × F�, and Δκψ ¼ ð∇κ · ∇κÞψ in orthonormal
coordinate systems endowed with the diagonal 3-metric καβ,
Eq. (A2), are given as [31,35,51]

gradκψ ¼ i1ffiffiffiffiffiffi
κ11

p ∂ψ
∂x1 þ

i2ffiffiffiffiffiffi
κ22

p ∂ψ
∂x2 þ

i3ffiffiffiffiffiffi
κ33

p ∂ψ
∂x3 : ðA8Þ
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divκF ¼ 1ffiffiffi
κ

p
� ∂
∂x1

� ffiffiffi
κ

pffiffiffiffiffiffi
κ11

p F̂1

�
þ ∂
∂x2

� ffiffiffi
κ

pffiffiffiffiffiffi
κ22

p F̂2

�

þ ∂
∂x3

� ffiffiffi
κ

pffiffiffiffiffiffi
κ33

p F̂3

�	
: ðA9Þ

curlκF ¼ 1ffiffiffi
κ

p
� ffiffiffiffiffiffi

κ11
p

i1

� ∂
∂x2 ð

ffiffiffiffiffiffi
κ33

p
F̂3Þ −

∂
∂x3 ð

ffiffiffiffiffiffi
κ22

p
F̂2Þ

�

þ ffiffiffiffiffiffi
κ22

p
i2

� ∂
∂x3 ð

ffiffiffiffiffiffi
κ11

p
F̂1Þ −

∂
∂x1 ð

ffiffiffiffiffiffi
κ33

p
F̂3Þ

�

þ ffiffiffiffiffiffi
κ33

p
i3

� ∂
∂x1 ð

ffiffiffiffiffiffi
κ22

p
F̂2Þ −

∂
∂x2 ð

ffiffiffiffiffiffi
κ11

p
F̂1Þ

�	
;

ðA10Þ

Δκψ ¼ 1ffiffiffi
κ

p
� ∂
∂x1

� ffiffiffi
κ

p
κ11

∂ψ
∂x1

�
þ ∂
∂x2

� ffiffiffi
κ

p
κ22

∂ψ
∂x2

�

þ ∂
∂x3

� ffiffiffi
κ

p
κ33

∂ψ
∂x3

�	
: ðA11Þ

APPENDIX B: LIGHT PROPAGATION IN
WEAK AND STATIC GRAVITY

1. Geodesics in weak and static gravity

To investigate the propagation of light in the vicinity of
the Sun, we consider the metric (1). We represent the
trajectory of a photon as

xαðtÞ ¼ xα0 þ kαcðt − t0Þ þ xαGðtÞ þOðG2Þ; ðB1Þ

where kα is the unit vector in the unperturbed direction of a
photon’s propagation and xαGðtÞ is the post-Newtonian term.
We define the four-dimensional wave vector in a curved
space-time as usual:

Km ¼ dxm

dλ
¼ dx0

dλ

�
1;
dxα

dx0

�
¼ K0ð1; καÞ; ðB2Þ

where λ is the parameter along the ray’s path and κα ¼
dxα=dx0 is the unit vector in that direction, i.e., κϵκϵ ¼ −1
[do not confuse κα with the three-dimensional metric
καβ in (A2)]. From (B1) we see that the unit vector κα

may be represented as κα ¼ kα þ kαGðtÞ þOðG2Þ, where
kαGðtÞ ¼ dxαG=dx0 is the post-Newtonian perturbation.
The wave vector obeys the geodesic equation:
dKm=dλþ Γm

klK
mKl ¼ 0, which yields

dK0

dλ
− 2K0Kϵc−2∂εU ¼ OðG2Þ; ðB3Þ

dKα

dλ
þ 2KαKϵc−2∂ϵUþ ððK0Þ2 −KϵKϵÞc−2∂αU ¼OðG2Þ:

ðB4Þ

Equation (B3) is an integral of motion due to energy
conservation. Indeed, we can present it as

dK0

dλ
− 2K0Kϵc−2∂ϵU ¼ d

dλ

�
g00

dx0

dλ

�
þOðG2Þ ¼ OðG2Þ:

ðB5Þ

Therefore, in the static field energy is conserved, and we
have the following integral of motion:

g00
dx0

dλ
¼ constþOðG2Þ⇒x0¼ct¼k0λþx0GðλÞþOðG2Þ;

ðB6Þ

where x0GðλÞ is the post-Newtonian correction. We
recall that the wave vector Km is a null vector, which, to
first order in G and with K0 ¼ k0 þOðGÞ yields
KmKm¼0¼ðk0Þ2ð1þγϵβkϵkβþOðGÞÞ. Then, Eq. (B4)
becomes

dKα

dλ
þ 2ðk0Þ2ðkαkϵ − γαϵkμkμÞc−2∂ϵU ¼ OðG2Þ: ðB7Þ

We can now represent (B7) in terms of derivatives with
respect to time x0. First we have

dKα

dλ
¼ ðK0Þ2 d

2xα

dx02
þ dK0

dλ
dxα

dx0
: ðB8Þ

Substituting (B8) into (B7) and using (B3), we have

d2xα

dx02
þ 2ðkαkϵ − γαϵkμkμÞc−2∂ϵU

¼ −
dK0

dλ
dxα

dx0
1

ðk0Þ2 þOðG2Þ

¼ −2kαkϵc−2∂ϵU þOðG2Þ: ðB9Þ

Remember that for light ds2 ¼ 0. Then, from the fact that it
moves along the light cones, the following expression is
valid gmnðdxm=dx0Þðdxn=dx0Þ ¼ 0 ¼ 1þ kϵkϵ þOðGÞ,
which for (B9) yields

d2xα

dx02
¼ −2ðγαϵ þ 2kαkϵÞc−2∂ϵU þOðG2Þ: ðB10Þ

We begin by examining the Newtonian part of (B1) and
representing it as

xαðtÞ ¼ xα0 þ kαcðt− t0Þ þOðGÞ
¼ xα0 − kαðk · x0Þ þ kαððk · x0Þ þ cðt− t0ÞÞ þOðGÞ
¼ ½k× ½x0 ×k��α þ kαððk · x0Þ þ cðt− t0ÞÞ þOðGÞ:

ðB11Þ
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Following [42,69], we define bα0 ≡ b0 ¼ ½½k × x0� × k� þ
OðGÞ to be the impact parameter of the unperturbed
trajectory of the light ray. The vector b0 is directed from
the origin of the coordinate system toward the point of the
closest approach of the unperturbed path of light ray to that
origin. We also introduce the parameter l ¼ lðtÞ as
follows:

l ¼ ðk · xÞ ¼ ðk · x0Þ þ cðt − t0Þ: ðB12Þ
These quantities allow us to rewrite (B11) as

xαðlÞ ¼ bα0 þ kαlþOðGÞ;
rðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 þ l2

q
þOðGÞ: ðB13Þ

The following relations hold:

rþ l ¼ b20
r − l

þOðGÞ;

r0 þ l0 ¼
b20

r0 − l0

þOðGÞ;

and
rþ l
r0 þ l0

¼ r0 − l0

r − l
þOðGÞ: ðB14Þ

They are useful for presenting the results of integration of
the light ray equations in different forms. Clearly, when the
coordinate system oriented along the initial direction of the
ray’s path, then l ¼ ðk · xÞ ¼ z.
Below, we focus our discussion on the largest contri-

bution to the gravitational deflection of light: that due to the
field produced by a monopole. In this case, the Newtonian
potential may be given by c−2UðrÞ ¼ rg=2rþOðr−3; c−4Þ,
where rg ¼ 2GM=c2 is the Schwarzschild radius of the
source. Therefore, the quantity u in (1) has the form

u ¼ 1þ rg
2r

þOðr−3; c−4Þ: ðB15Þ

If needed, one can account for the contribution of the
higher-order multipoles using the tools developed
in [42,43].
Limiting our discussion to the monopole given by

(B15), we have c−2∂αU ¼ −ðrg=2r2Þ∂αrþOðG2; r−4Þ.
We recall that ∂αr¼∂α

ffiffiffiffiffiffiffiffiffiffiffiffi
−xϵxϵ

p ¼−xα=r. Then, c−2∂αU ¼
ðrg=2r3Þxα þOðG2; r−4Þ. In this case, Eq. (B10) takes the
form:

d2xα

dx02
¼ −rgðγαϵ þ 2kαkϵÞ x

ϵ

r3
þOðG2Þ

¼ −rg
bα0 − kαl

ðb20 þ l2Þ3=2 þOðG2Þ: ðB16Þ

Making the substitution d=dx0 ¼ d=dl, we have the
following equation:

d2xα

dl2
¼ −rg

bα0 − kαl
ðb20 þ l2Þ3=2 þOðG2Þ: ðB17Þ

We integrate (B17) from −∞ to l to get the following
result:

dxα

dl
¼kα−rg

Z
l

−∞

bα0−kαl0

ðb20þl02Þ3=2dl
0 þOðG2Þ

¼kα−rg

�
kαffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20þl2

p þbα0
b20

�
lffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b20þl2
p þ1

��
þOðG2Þ;

ðB18Þ

or, equivalently, with the help of (B12)–(B13) we have the
following expression for the wave vector κα from (B2):

κα ¼ dxα

dl
¼ kα

�
1 −

rg
r

�
−
rg
b20

bα0

�
1þ ðk · xÞ

r

�
þOðG2Þ:

ðB19Þ

We may now integrate (B18) from l0 to l to obtain

xαðlÞ ¼ bα0 þ kαl − rg

Z
l

l0

�
kαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b20 þ l02p
þ bα0

b20

�
l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b20 þ l02p þ 1

��
dl0 þOðG2Þ; ðB20Þ

which results in

xαðlÞ ¼ bα0 þ kαl − rg

�
kα ln

lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 þ l2

p
l0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 þ l2

0

p
þ bα0

b20
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 þ l2

q
þ l −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 þ l2

0

q
− l0Þ

�
þOðG2Þ; ðB21Þ

or, equivalently, substituting l and r from (B12)–(B13), we
have

xαðtÞ ¼ xα0 þ kαcðt − t0Þ − rg

�
kα ln

rþ ðk · xÞ
r0 þ ðk · x0Þ

þ bα0
b20

ðrþ ðk · xÞ − r0 − ðk · x0ÞÞ
�
þOðG2Þ:

ðB22Þ

Therefore, the trajectory of a photon in a static weak
gravitational field is described by (B21), while the direction
of its wave vector κα ¼ dxα=dx0 is given by (B19). For a
radial light ray given by kα ¼ xα0=r0 ¼ nα0 and b0 ¼ 0, then
Eqs. (B19) and (B22) become
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dxα

dl
¼ nα0

�
1 −

rg
r

�
þOðG2Þ; ðB23Þ

xαðtÞ ¼ xα0 þ nα0cðt − t0Þ − rgnα0 ln
r
r0

þOðG2Þ: ðB24Þ

The solutions given by Eqs. (B22) and (B24) describe
the motion of a photon along a geodesic in the post-
Newtonian approximation in the static spacetime of a
monopole. While Eq. (B22) describes the motion along
an arbitrary geodesic, Eq. (B24) deals only with radial
propagation of light.

2. Geometric optics approximation for the wave
propagation in the vicinity of a massive body

In geometric optics, the phase φ is a scalar function,
a solution to the eikonal equation [3,31,42,70]:

gmn∂mφ∂nφ ¼ 0: ðB25Þ

Given the wave vector Km ¼ ∂mφ, and its tangent Km ¼
dxm=dλ ¼ gmn∂nφ where λ is an affine parameter, we note
that (B25) states that Km is null (gmnKmKn ¼ 0), thus

dKm

dλ
¼ 1

2
∂mgklKkKl: ðB26Þ

Equation (B25) can be solved by assuming an unperturbed
solution that is a plane wave:

φðt;xÞ ¼ φ0 þ
Z

kmdxm þ φGðt;xÞ þOðG2Þ; ðB27Þ

where φ0 is an integration constant and, to Newtonian
order, km ¼ ðk0; kαÞ ¼ k0ð1;kÞ, where k0 ¼ ω=c, is a
constant null vector of the unperturbed photon trajectroy,
γmnkmkn ¼ OðGÞ; φG is the post-Newtonian perturbation
of the eikonal. The wave vector Kmðt;xÞ then also admits a
series expansion in the form

Kmðt;xÞ ¼ dxm

dλ
¼ gmn∂nφ ¼ km þ kmG ðt;xÞ þOðG2Þ;

ðB28Þ

where kmG ðt;xÞ ¼ γmn∂nφGðt;xÞ is the first order perturba-
tion of the wave vector. Substituting (B27) into (B25) and
defining hmn ¼ gmn − γmn with gmn, we obtain an ordinary
differential equation to for φG:

dφG

dλ
¼ −

1

2
hmnkmkn ¼ −

2k20
c2

U þOðG2Þ; ðB29Þ

where dφG=dλ ¼ Km∂mφ. Similarly to (B1), to Newtonian
order, we represent the light ray’s trajectory as

fxmg¼ðx0¼ct;xðtÞ¼x0þkcðt− t0ÞÞþOðGÞ; ðB30Þ

and substituting a monopole potential characterized by the
Schwarzschild radius rg for U, we obtain

dφG

dλ
¼ −

k20rg
jx0 þ kcðt − t0Þj

: ðB31Þ

Representation (B30) allows us to express the Newtonian
part of the wave vector Km, as given by (B28), as
Km ¼ dxm=dλ ¼ k0ð1;kÞ þOðGÞ, where k0 is immedi-
ately derived as k0 ¼ cdt=dλþOðGÞ and jkj ¼ 1.
Keeping in mind that km is constant, we establish an
important relationship:

dλ ¼ cdt
k0

þOðGÞ ¼ cdt
k0

þOðGÞ; ðB32Þ

which we use to integrate (B31). As a result, in the body’s
proper reference frame [32,44], we then obtain

φðt;xÞ ¼ φ0 þ k0

�
cðt − t0Þ − k · ðx − x0Þ

− rg ln

�
rþ ðk · xÞ
r0 þ ðk · x0Þ

	�
þOðG2Þ; ðB33Þ

which, for a radial light ray characterized by kα ¼ xα0=r0 ¼
nα0 [similarly to (B24)], yields

φðt;xÞ ¼ φ0þ k0

�
cðt− t0Þ− ðr− r0Þ− rg ln

r
r0

�
þOðG2Þ:

ðB34Þ

It is worth pointing out that the results obtained here for
the phase of an EM wave (B33) and (B34) are equivalent
to those obtained in the preceding section obtained for the
geodesic trajectory of a photon (B22) and (B24).

3. Local basis vectors

In Sec. II D we introduced the local basis vectors
κ ¼ K=jKj, π ¼ ½κ × n�=j½κ × n�j and ϵ ¼ ½π × κ�. These
vectors are very convenient to develop the results in
this paper. In this appendix, we express these vectors in
various coordinates with accuracy to the order ofOðr2gÞ. We
do that by using an expression for the trajectory of the
photon (B22) and its phase φ, (B33) or, similarly, (23). We
recognize from (23) that for a wave coming from −∞ along
the z axis, the time-independent part of the phase with
ðk · rÞ ¼ z has the form

φ ¼ k0ðz − rg ln k0ðr − zÞ þOðr2gÞÞ: ðB35Þ

From the definition for the wave vector, Kα ¼ ∂αφ, and
with the help of (B14), we have
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Kα ¼ ∂αφ

¼ k0

�
kα

�
1þ rg

r

�
−
rg
b20

�
1þ ðk · rÞ

r

�
bα þOðG2Þ

�
:

ðB36Þ

The covariant wave vector Kα is given as

Kα ¼ dxα

dλ
¼ dx0

dλ
dxα

dx0
¼ K0

dxα

dx0
: ðB37Þ

From (B19), we have

dxα

dx0
¼ dxα

dl
¼ kα

�
1 −

rg
r

�
−
rg
b20

�
1þ ðk · rÞ

r

�
bα þOðG2Þ:

ðB38Þ

Also, defining K0 ¼ k0 ¼ ω0=c (see [31]) in a static field,
we have

K0 ¼ g0iKi¼ g00K0þg0ϵKϵ¼ g00K0¼ u2k0¼
�
1þ rg

r

�
k0:

ðB39Þ

Therefore, collecting all the terms we have the following
expression for Kα:

Kα ¼ K0
dxα

dx0
¼ k0

�
kα −

rg
b20

�
1þ ðk · rÞ

r

�
bα þOðG2Þ

�
:

ðB40Þ

We can verify that the following relations hold:

Kα ¼ gαϵKϵ ¼ gαϵ∂ϵφ ¼ u−2γαϵ∂ϵφ: ðB41Þ

Next, we use expression (B22) for the position vector of
a photon on its trajectory, written as

rðtÞ ¼ b0 þ lk − rg

�
k ln

rþ ðk · rÞ
r0 þ ðk · r0Þ

þ b0

b20
ðrþ ðk · rÞ

− r0 − ðk · r0ÞÞ
�
þOðG2Þ; ðB42Þ

where l and r are given by (B12) and (B13), correspond-
ingly. Expressions (B40) and (B42) allow us to compute all
local vectors for a ray moving in the plane formed by k and
r vectors:

κðtÞ ¼ K=jKj ¼ k −
rg

r − z
1

r
b0 þOðr2gÞ; ðB43Þ

πðtÞ ¼½κ × r�=j½κ × r�j ¼ ½k × b0�=j½k × b0�j þOðr2gÞ;
ðB44Þ

ϵðtÞ ¼½π × κ� ¼ b0

b0
þ rg
r − z

b0
r
kþOðr2gÞ: ðB45Þ

In the Cartesian coordinate system ðx; y; zÞ used to
develop (36)–(37), remembering that the impact parameter
has the form b0 ¼ ½k × ½r × k�� þOðrgÞ ¼ ðx; y; 0Þ þ
OðrgÞ, we present (B43)–(B45) in the following convenient
form:

κðtÞ ¼ K=jKj ¼ ez −
rg

r − z
1

r
ðxex þ yeyÞ þOðr2gÞ;

ðB46Þ

πðtÞ ¼½κ × ex�=j½κ × ex�j ¼ ey þ
rg

r − z
y
r
ez þOðr2gÞ;

ðB47Þ

ϵðtÞ ¼½π × κ� ¼ ex þ
rg

r − z
x
r
ez þOðr2gÞ: ðB48Þ

The local basis vectors (B46)–(B48) represent the right-
handed set of orthonormal unit vectors, that is the
following relationships exist: ½ϵ×π�¼κþOðr2gÞ, ½π × κ� ¼
ϵþOðr2gÞ, ½κ × ϵ� ¼ π þOðr2gÞ, thus, ðϵ · πÞ ¼ ðϵ · κÞ ¼
ðπ · κÞ ¼ 0þOðr2gÞ. One can also verify that ϵ2 ¼ π2 ¼
κ2 ¼ 1þOðr2gÞ.

4. Spherical waves in the weak and static gravity

We know from quantum mechanics that spherical waves
are important for the scattering problem. To study spherical
waves in a weak and static gravitational field, we need to
find solutions to the EM field by solving (18), namely,

Δψ þ k2
�
1þ 2rg

r

�
ψ ¼ Oðr2g; r−3Þ: ðB49Þ

We seek a spherically symmetric solution with the
following properties:

∂ψ
∂θ ¼

∂ψ
∂ϕ¼0; or; in other words ψ ¼ψðrÞ: ðB50Þ

In this case the d’Alembertian Δψ reduces to

Δψ ¼ 1

r2
∂
∂r

�
r2
∂ψ
∂r

�
þ 1

r2 sin θ
∂
∂θ

�
sin θ

∂ψ
∂θ

�

þ 1

r2sin2θ
∂2ψ

∂ϕ2

⇒ Δψ ¼ 1

r2
∂
∂r

�
r2
∂ψ
∂r

�
: ðB51Þ

Therefore, (B49) takes the form
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∂2ψ

∂r2 þ 2

r
∂ψ
∂r þ k2

�
1þ 2rg

r

�
ψ ¼ Oðr2g; r−3Þ: ðB52Þ

A formal solution to (B52) may be given in the terms of
confluent hypergeometric function [55]:

ψðrÞ ¼ Ae�ikr
1F1½1 ∓ ikrg; 2;∓ 2ikr� þOðr2g; r−2Þ;

ðB53Þ

where 1F1 is the confluent hypergeometric function of the
first kind (C2) and A is arbitrary constant.
Following the same approach that was demonstrated

in Sec. II C, we studied the asymptotic behavior of the
solution (B53). It turned out that such a solution may be
given as follows:

ψ1ðrÞ ¼ � A
ik

e−
π
2
krg

Γð1� ikrgÞ
1

r
e�ikðrþrg ln 2krÞ þOðr2g; r−2Þ:

ðB54Þ

By choosing the constant A ¼ �ike
π
2
krgΓð1� ikrgÞ, we

may present the solution for a spherical wave in the weak
and static gravity in the following form:

ψðrÞ ¼ c1
r
eikðrþrg ln 2krÞ þ c2

r
e−ikðrþrg ln 2krÞ þOðr2g; r−2Þ;

ðB55Þ

representing both incoming and outgoing radial waves,
with c1, c2 being arbitrary constants. Note that the spherical
wave solution (B55) that we obtained is consistent with the
solution for the phase of a radially propagating beam of
light (i.e., radial geodesic) given by (B34). Equation (B55)
establishes the functional dependence of the logarithmic
term, which is important for the discussions of the scatter-
ing problem in Sec. II C.

APPENDIX C: THE CONFLUENT
HYPERGEOMETRIC FUNCTION

1. Mathematical properties of the confluent
hypergeometric function

We present some of the properties of the confluent
hypergeometric function, denoted here as F½αjβjw�, which
are useful to derive our results. As defined (e.g., [55]),
F½αjβjw� is the regular solution of

w
d2F
dw2

þ ðβ − wÞ dF
dw

− αF ¼ 0: ðC1Þ

It is given by [55]

1F1½α; β; w� ¼ 1þ α

β

w
1!

þ αðαþ 1Þ
βðβ þ 1Þ

w2

2!

þ αðαþ 1Þðαþ 2Þ
βðβ þ 1Þðβ þ 2Þ

w3

3!
þ � � �

¼
X∞
n¼0

Γðnþ αÞΓðβÞ
ΓðαÞΓðnþ βÞ

wn

n!
: ðC2Þ

The function 1F1 satisfies the following identities:

F½αjβjw� ¼ ewF½β − αjβj − w�; ðC3Þ

d
dw

F½αjβjw� ¼ α

β
F½αþ 1jβ þ 1jw�

¼ α

β
fF½αþ 1jβjw� − F½αjβjw�g

¼
�
α

β
− 1

�
F½αjβ þ 1jw� þ F½αjβjw�

¼ β − 1

w
fF½αjβjw� − F½αjβ − 1jw�g: ðC4Þ

Specifically,

d
dw

F½α; β; w�≡ F0½α; β; w� ¼ α

β
F½αþ 1; β þ 1; w�; ðC5Þ

In Sec. III C we introduced two useful functions (106):

F½1� ¼ 1F1½ikrg; 1; ikrð1 − cos θÞ�;
F½2� ¼ 1F1½1þ ikrg; 2; ikrð1 − cos θÞ�: ðC6Þ

Equation (C5) leads to the following useful relation
between F½1� and F½2�:

1F1½1þ ikrg; 2; ikrð1 − cos θÞ�

¼ 1

ikrg
1F

0
1½ikrg; 1; ikrð1 − cos θÞ� or

F½2� ¼ 1

ikrg
F0½1�: ðC7Þ

We will use this property when evaluating various con-
tributions to the EM field on the image plane and the
relevant Poynting vector, discussed in Secs. III G and III H,
correspondingly.

2. Asymptotic behavior of F½1� and F½2�
at large values of argument

The asymptotic form of 1F1 for large jwj, fixed α, β can
be obtained by writing [54,55]

1F1½α; β; w� ¼ W1½α; β; w� þ W2½α; β; w�; ðC8Þ
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where the functions W1 and W2 have the following asymp-
totic behavior [40,45]:

lim
jwj→∞

W1½α; β; w� ¼
ΓðβÞ

Γðβ − αÞ ð−wÞ
−αG½α; α − β þ 1;−w�;

− π < argð−wÞ < π; ðC9Þ

lim
jwj→∞

W2½α; β; w� ¼
ΓðβÞ
ΓðαÞ e

wwα−βG½1 − α; β − α; w�;

− π < argðwÞ < π; ðC10Þ

with the function G given [52] in the form

G½α; β; w� ¼ Γð1 − βÞ
2πi

Z
C1

�
1þ t

z

�
−α
tβ−1etdt; ðC11Þ

where the integration path C1 goes from minus infinity
around the origin (t ¼ 0) counterclockwise and back to
minus infinity. Integrating by parts, we obtain the asymp-
totic series

G½α; β; w� ¼
X∞
n¼0

Γðnþ αÞΓðnþ βÞ
ΓðαÞΓðβÞ

w−n

n!

¼ 1þ αβ

1!w
þ αðαþ 1Þβðβ þ 1Þ

2!w2

þ αðαþ 1Þðαþ 2Þβðβ þ 1Þðβ þ 2Þ
3!w3

þ � � �
ðC12Þ

This is an asymptotic expansion. For arbitrary values of
α, β and w, successive terms may eventually grow in size
beyond limit. However, it is true that there exist functions
jϑnðα; β; wÞj < 1 such that

G½α; β; w� ¼
Xn−1
k¼0

Γðkþ αÞΓðkþ βÞ
ΓðαÞΓðβÞ

w−k

k!

þ ϑnðα; β; wÞ
Γðnþ αÞΓðnþ βÞ

ΓðαÞΓðβÞ
w−n

n!
; ðC13Þ

i.e., when the series is truncated after (n − 1) terms, the
error is no greater than the nth term [71,72].
Given the asymptotic properties of 1F1½α; β; w� from

(C8), we take the solution to equation (18) which is given
by (20) as ψðrÞ ¼ ψ0eikz1F1ðikrg; 1; ikðr − zÞÞ and split it
in the form of ψðrÞ ¼ ψincðrÞ þ ψ sðrÞ, where ψðrÞinc is
the incoming and ψsðrÞ is the scattered waves, correspond-
ingly, which are given as

ψincðrÞ ¼ ψ0eikzW1ðikrg; 1; ikðr − zÞÞ; ðC14Þ

ψsðrÞ ¼ ψ0eikzW2ðikrg; 1; ikðr − zÞÞ: ðC15Þ

Using the asymptotic forms (C9) and (C10), for large
values of the argument kðr − zÞ → ∞, functions W1 and W2

have the following asymptotic behavior:

lim
kðr−zÞ→∞

W1ðikrg; 1; ikðr − zÞÞ

¼ e−
π
2
krg

Γð1 − ikrgÞ
e−ikrg ln kðr−zÞG½ikrg; ikrg;−ikðr − zÞ�;

ðC16Þ
lim

kðr−zÞ→∞
W2ðikrg; 1; ikðr − zÞÞ

¼ e−
π
2
krg

ΓðikrgÞ
1

ikðr − zÞ e
ikðr−zþrg ln kðr−zÞÞ

× G½1 − ikrg; 1 − ikrg; ikðr − zÞ�: ðC17Þ
From the asymptotic expansion of G given by (C12), we
find that

G½ikrg; ikrg;−ikðr − zÞ� ¼ 1þ k2r2g
ikðr − zÞ þ � � �

¼ 1þO
�
ikr2g
r − z

�
; ðC18Þ

G½1 − ikrg; 1 − ikrg; ikðr − zÞ� ¼ 1þ ð1 − ikrgÞ2
ikðr − zÞ þ � � �

¼ 1 −
2rg
r − z

þO
�
ikr2g
r − z

�
;

ðC19Þ
where, in (C19), we used the fact that for the large values of
the argument kðr − zÞ → ∞ and for the high-frequency EM
waves krg ≫ 1. This allows us to write

ψincðrÞ¼ψ0

e−
π
2
krg

Γð1− ikrgÞ
eikðz−rg lnkðr−zÞÞ

�
1þO

�
ikr2g
r−z

��
;

ðC20Þ

ψsðrÞ ¼ ψ0

e−
π
2
krg

Γð1þ ikrgÞ
rg

r − z
eikðrþrg ln kðr−zÞÞ

×

�
1þO

�
ikr2g
r − z

��
; ðC21Þ

where in (C21) we neglected the term Oðr2g=ðr − zÞ2Þ, as
being beyond the first post-Newtonian approximation
taken in (1)–(2). Also, examining the order terms in these
approximations, we note that although their absolute
magnitudes are large, they are small compared to the
logarithmic term krg ln kðr − zÞ present in the series
expansion of the preceding exponential. That is to say that
the order term contributes to the Shapiro delay [which is
present in the phase of (C20) in the form of δdshap ¼
−rg ln kðr − zÞ þOðr2gÞ] at the second post-Newtonian
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order, namely it is of the order of Oðr2g=ðr − zÞÞ, which is
beyond the first post-Newtonian approximation accepted in
this paper.
Collecting the terms, we may now present the asymptotic

behavior F½1� ¼ F½ikrg; 1; ikðr − zÞ� at large values of the
argument kðr − zÞ → ∞, which, to post-Newtonian order,
is given as below:

F½1� ¼ e−
π
2
krg

Γð1 − ikrgÞ
�
e−ikrg ln kðr−zÞ þ rg

r − z

Γð1 − ikrgÞ
Γð1þ ikrgÞ

× eikðr−zþrg ln kðr−zÞÞ þO
�
ikr2g
r − z

��
: ðC22Þ

The approximations given by (C20)–(C21) and by the
resulting expression (C22) are good so long as
rg=ðr − zÞ≲ 1, which, together with z ¼ r cos θ, yields a
constraint

θ ≳
ffiffiffiffiffiffiffi
2rg
r

r
: ðC23Þ

Similarly, we study the behavior of the function F½2� ¼
F½1þ ikrg; 2; ikðr − zÞ�. First, we present F½2� ¼ W3 þ W4,
where for large values of kðr − zÞ, functions W3 and W4 have
the following asymptotic behavior:

lim
kðr−zÞ→∞

W3ð1þ ikrg; 2; ikðr − zÞÞ ¼ ie−
π
2
krg

Γð1 − ikrgÞ
1

kðr − zÞ e
−ikrg ln kðr−zÞG½1þ ikrg; ikrg;−ikðr − zÞ�

¼ ie−
π
2
krg

Γð1 − ikrgÞ
1

kðr − zÞ e
−ikrg ln kðr−zÞ

�
1þO

�
ikr2g
r − z

��
; ðC24Þ

lim
kðr−zÞ→∞

W4ð1þ ikrg; 2; ikðr − zÞÞ ¼ −
ie−

π
2
krg

Γð1þ ikrgÞ
1

kðr − zÞ e
ikðr−zþrg ln kðr−zÞÞG½−ikrg; 1 − ikrg; ikðr − zÞ�

¼ −
ie−

π
2
krg

Γð1þ ikrgÞ
1

kðr − zÞ e
ikðr−zþrg ln kðr−zÞÞ

�
1þO

�
ikr2g
r − z

��
: ðC25Þ

As a result, the asymptotic behavior of F½2� ¼ F½1þ ikrg; 2; ikðr − zÞ� at large values of the argument jwj ¼ kðr − zÞ →
∞ and angles θ outside the immediate vicinity of the optical axis, i.e., satisfying (C23), is given as

F½2� ¼ e−
π
2
krg

Γð1 − ikrgÞ
i

kðr − zÞ
�
e−ikrg ln kðr−zÞ −

Γð1 − ikrgÞ
Γð1þ ikrgÞ

eikðr−zþrg ln kðr−zÞÞ þO
�
ikr2g
r − z

��
: ðC26Þ

3. Asymptotic behavior of F½1� and F½2� at small angles

To understand the properties of the SGL near the optical axis, we need to the investigate the behavior of the solution at
small angles. Based on the properties of the hypergeometric function (C2), here we consider the behavior of F½1� and F½2�
from (C6) when θ is small. Using α ¼ ikrg and w ¼ ikrð1 − cos θÞ, we define

x ¼ −αw ¼ k2rgrð1 − cos θÞ ≥ 0: ðC27Þ

We next rearrange (C2) as

F½1� ¼
X∞
n¼0

Γðnþ αÞΓð1Þ
ΓðαÞΓðnþ 1Þ ·

wn

n!
¼

X∞
n¼0

Γðnþ αÞwn

ΓðαÞðn!Þ2 ¼ 1þ
X∞
n¼1

��Yn−1
k¼0

ðαþ kÞ
�

wn

ðn!Þ2
	

¼ 1þ αwþ αðαþ 1Þ w2

ð2!Þ2 þ αðαþ 1Þðαþ 2Þ w3

ð3!Þ2 þ αðαþ 1Þðαþ 2Þðαþ 3Þ w4

ð4!Þ2 þ � � �

¼
X∞
n¼0

ðαÞn
wn

ðn!Þ2 ¼
X∞
n¼0

Xn
k¼0

ð−1Þn−ksðn; kÞαk wn

ðn!Þ2 ; ðC28Þ
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where ðÞn denotes Pochhammer’s symbol6 with ðÞ0 ¼ 1,
and sðn; kÞ is the Stirling number of the first kind [55];
sð0; 0Þ ¼ 1. Reversing the order of summation yields

F½1� ¼
X∞
k¼0

X∞
n¼k

ð−1Þn−ksðn; kÞαk wn

ðn!Þ2

¼
X∞
n¼0

vnð−1Þn
X∞
k¼0

sðnþ k; kÞ ðαwÞk
½ðnþ kÞ!�2

¼
X∞
n¼0

wnAn; ðC29Þ

with An ¼ ð−1ÞnP∞
k¼0 sðnþ k; kÞ ðαwÞk

½ðnþkÞ!�2. The Stirling

number of the first kind can be evaluated [55] in terms
of the Stirling number of the second kind, which, in turn,
also has a closed form sum:

sðnþ k; kÞ ¼
Xn
m¼0

ð−1Þm
�
nþ k − 1þm

nþm

��
2nþ k

n −m

�

×
1

ðnþmÞ!
Xm
l¼0

ð−1Þm−l
�
m

l

�
lnþm:

This can be evaluated for specific values of n:

sðk; kÞ ¼ 1;

sð2þ k; kÞ ¼ 1

24
kðkþ 1Þðkþ 2Þð3kþ 5Þ;

sð1þ k; kÞ ¼ −
1

2
kðkþ 1Þ;

sð3þ k; kÞ ¼ −
1

48
kðkþ 1Þðkþ 2Þ2ðkþ 3Þ2: ðC30Þ

We also note that the Bessel functions are given by

Jnð2
ffiffiffi
x

p Þ ¼ ð ffiffiffi
x

p ÞnP∞
k¼0

ð−xÞk
k!ðnþkÞ!. Given x ¼ −αw, we have

An ¼ ð−1Þn P∞
k¼0 sðnþ k; kÞ ð−xÞk

½ðnþkÞ!�2, therefore

A0 ¼
X∞
k¼0

ð−xÞk
ðk!Þ2 ¼ J0ð2

ffiffiffi
x

p Þ; ðC31Þ

A1 ¼
1

2

X∞
k¼1

kðkþ 1Þ ð−xÞk
½ð1þ kÞ!�2

¼ 1

2

X∞
k¼0

ð−xÞkþ1

k!ðkþ 2Þ! ¼
1

2
J2ð2

ffiffiffi
x

p Þ; ðC32Þ

A2 ¼
1

24

X∞
k¼1

kðkþ 1Þðkþ 2Þð3kþ 5Þ ð−xÞk
½ð2þ kÞ!�2

¼ 1

8
J4ð2

ffiffiffi
x

p Þ − 1

3
ffiffiffi
x

p J3ð2
ffiffiffi
x

p Þ; ðC33Þ

A3 ¼
1

48

X∞
k¼1

kðkþ 1Þðkþ 2Þ2ðkþ 3Þ2 ð−xÞk
½ð3þ kÞ!�2

¼ −
1

48
J2ð2

ffiffiffi
x

p Þ: ðC34Þ

Substituting (C31)–(C34) into (C29), we obtain a very
useful expression for the confluent hypergeometric func-
tion F½1� ¼ 1F1½α; 1; w� in terms of Bessel functions:

F½1� ¼ J0ð2
ffiffiffi
x

p Þ − w
2
J2ð2

ffiffiffi
x

p Þ

þ w2

�
1

8
J4ð2

ffiffiffi
x

p Þ − 1

3
ffiffiffi
x

p J3ð2
ffiffiffi
x

p Þ
�
−
w3

48
J2ð2

ffiffiffi
x

p Þ

þ
X∞
n¼4

ð−wÞn
X∞
k¼0

sðnþ k; kÞ ð−xÞk
½ðnþ kÞ!�2 : ðC35Þ

This result is also consistent with (13.3.8) in [55]. Using
the properties of the Bessel functions [55], namely that

Jpþ1ðzÞ ¼
2p
z
JpðzÞ − Jp−1ðzÞ; ðC36Þ

we can present J4ð2
ffiffiffi
x

p Þ in (C35) as J4ð2
ffiffiffi
x

p Þ ¼
ð3= ffiffiffi

x
p ÞJ3ð2

ffiffiffi
x

p Þ − J2ð2
ffiffiffi
x

p Þ, which allows us to write
(C35) in a slightly different form as

F½1� ¼ J0ð2
ffiffiffi
x

p Þ−w
2
J2ð2

ffiffiffi
x

p Þ

þw2

�
1

24

1ffiffiffi
x

p J3ð2
ffiffiffi
x

p Þ− 1

8
J2ð2

ffiffiffi
x

p Þ
�
−
w3

48
J2ð2

ffiffiffi
x

p Þ

þ
X∞
n¼4

ð−wÞn
X∞
k¼0

sðnþ k; kÞ ð−xÞk
½ðnþ kÞ!�2 : ðC37Þ

Following the same approach, we may obtain a relation
for the function F½2�:

F½2� ¼ 1ffiffiffi
x

p J1ð2
ffiffiffi
x

p Þ
�
1þ w

2
þ w2

8
þ w3

48

�

þ w2

12x

�
1þ w

2

�
J2ð2

ffiffiffi
x

p Þ

þ
X∞
n¼4

ð−wÞn
X∞
k¼0

sðnþ k; kÞ ð−xÞk
ðnþ k − 1Þ!ðnþ kÞ! :

ðC38Þ6http://mathworld.wolfram.com/PochhammerSymbol.html.
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In a small angle approximation we use θ ¼ ρ=zþ
Oððρ=zÞ2Þ and noting that r ∼ zþOðrgÞ, we present w
as jwj ¼ krð1 − cos θÞ ≈ πρ2=zλþOðrgÞ. Thus, in the
immediate vicinity of the optical axis jwj < 1. As a result,
the functions F½1� and F½2� may be presented as

F½1� ¼ J0ð2
ffiffiffi
x

p Þ þ J2ð2
ffiffiffi
x

p Þð1 − ew=2Þ

þ w2

24

1ffiffiffi
x

p J3ð2
ffiffiffi
x

p Þ þOðw4Þ; ðC39Þ

F½2� ¼
�

1ffiffiffi
x

p J1ð2
ffiffiffi
x

p Þ þ w2

12x
J2ð2

ffiffiffi
x

p Þ
�
ew=2 þOðw4Þ:

ðC40Þ

When jwj is small enough such that terms containing w2

may also be omitted, we can keep only the leading terms in
these expressions:

F½1� ¼ J0ð2
ffiffiffi
x

p Þ − 1

2
wJ2ð2

ffiffiffi
x

p Þ þOðw2Þ; ðC41Þ

F½2� ¼ 1ffiffiffi
x

p J1ð2
ffiffiffi
x

p Þ þOðwÞ: ðC42Þ

Based on these expressions, we may compute the
following combinations:

F½1�F½1�� ¼J20ð2
ffiffiffi
x

p ÞþOðw2Þ;
1

2
ðF½1�F½2��þF½1��F½2�Þ¼ 1ffiffiffi

x
p J0ð2

ffiffiffi
x

p ÞJ1ð2
ffiffiffi
x

p ÞþOðw2Þ;

ðC43Þ

F½2�F½2�� ¼ 1

x
J21ð2

ffiffiffi
x

p Þ þOðw2Þ;
1

2
ðF½1�F½2�� − F½1��F½2�Þ ¼ OðwÞ; ðC44Þ

where A� denotes a complex conjugate of A and x is given
by (C27).

APPENDIX D: PROPERTIES OF
COULOMB FUNCTIONS

1. Differential equation

In spherical coordinates, the problem of scattering of an
EM wave on a gravitational monopole for each value of
partial momentum l leads to the following radial equation
(we follow very closely the discussion in [45]):

d2R
dr2

þ
�
k2
�
1þ 2rg

r

�
−
lðlþ 1Þ

r2

�
R ¼ Oðr2g; r−3Þ; ðD1Þ

Partial solutions to this equation may be obtained in
terms of spherical Coulomb functions. These are the

functions of ρ ¼ kr. They depend on the wave number,
k, distance to the deflector, r, and its Schwarzschild radius
rg. There exists a regular solution (∼rlþ1) at the coordinate
origin, Flðkrg; krÞ and irregular solutions Glðkrg; krÞ
together with Hþ

l ðkrg; krÞ; H−
l ðkrg; krÞ that are singular

(∼1=rl) at the coordinate origin.
With a substitution

z ¼ −2iρ; yl ¼ eiρρlþ1vl; ðD2Þ

equation (D1) may be presented in the form of the Laplace
equation:

�
z
d2

dz2
þ ðβ − zÞ d

dz
− α

	
vl ¼ 0; ðD3Þ

where α ¼ lþ 1 − ikrg, β ¼ 2lþ 2 are complex
constant coefficients. The solution to (D3) is the confluent
hypergeometric function 1F1 given in (C2). Equation (D3)
has a regular solution 1F1½lþ 1 − ikrg; 2lþ 2; z� and
two irregular solutions W1½lþ 1 − ikrg; 2lþ 2; z� and
W2½lþ 1 − ikrg; 2lþ 2; z�. Based on these functions we
can construct the solutions that we discuss below.

2. Relationships between the Coulomb functions
and their asymptotic properties

Given 1F1½lþ1− ikrg;2lþ2;z� and W1;2½lþ 1 − ikrg;
2lþ 2; z�, we introduce the following functions (see [45]):

Flðkrg;krÞ¼cleikrðkrÞlþ1
1F1½lþ1− ikrg;2lþ2;−2ikr�

¼cle−ikrðkrÞlþ1
1F1½lþ1þ ikrg;2lþ2;2ikr�;

ðD4Þ

Hð�Þ
l ðkrg; krÞ
¼ �2icle�ikrðkrÞlþ1W1½lþ 1 ∓ ikrg; 2lþ 2;∓ 2ikr�
¼ �2icle∓ikrðkrÞlþ1W2½lþ 1� ikrg; 2lþ 2;�2ikr�;

ðD5Þ

Glðkrg; krÞ ¼
1

2
ðHðþÞ

l þHð−Þ
l Þ: ðD6Þ

Alternatively, we can define a different, but equivalent, set
of solutions (A11) with Flðkrg; krÞ given by (D4), but also
defining Glðkrg; krÞ and the Coulomb-Hankel functions

Hð�Þ
l ðkrg; krÞ as

Hð�Þ
l ðkrg;krÞ ¼Glðkrg;krÞ� iFlðkrg;krÞ

¼ e�iðkrþkrg ln2kr−lπ
2
þσlÞð∓ 2ikrÞlþ1∓ikrg

×Uðlþ 1∓ ikrg;2lþ 2;�2ikrÞ; ðD7Þ
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where Uðα; β; zÞ is the corresponding irregular confluent
hypergeometric function defined in [55].
The quantities cl and σl (i.e., Coulomb phase shift) are

the following functions of rg:

cl ¼ 2le
π
2
krg

jΓðlþ 1 − ikrgÞj
ð2lþ 1Þ! ;

σl ¼ argΓðlþ 1 − ikrgÞ: ðD8Þ

For l ¼ 0, (D8) takes the form

c0 ¼
�

2πkrg
1 − e−2πkrg

�1
2

; σ0 ¼ argΓð1 − ikrgÞ; ðD9Þ

or, for l ≠ 0, (D8) takes the form

cl ¼ c0
ð2lþ 1Þ!!

Yl
j¼1

�
1þ k2r2g

j2

�1
2

;

σl ¼ σ0 −
Xl
j¼1

arctan
krg
j

: ðD10Þ

Both Fl and Gl are real-valued functions:

Hð−Þ
l ¼ HðþÞ�

l ; ðD11Þ

Fl ¼ 1

2i
ðHðþÞ

l −Hð−Þ
l Þ; ðD12Þ

Hð�Þ
l ¼ ðGl � iFlÞ: ðD13Þ

The asymptotic behavior of the Coulomb functions
outside the turning point defined by (87), when r → ∞

and r ≫ rt ¼ −rg þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2g þ lðlþ 1Þ=k2

q
, is well known

and given as

lim
kr→∞

Flðkrg; krÞ ∼ sin

�
krþ krg ln 2kr −

πl
2

þ σl

�
;

ðD14Þ

lim
kr→∞

Glðkrg; krÞ ∼ cos
�
krþ krg ln 2kr −

πl
2

þ σl

�
;

ðD15Þ

lim
kr→∞

HðþÞ
l ðkrg; krÞ ∼ exp

�
i

�
krþ krg ln 2kr −

πl
2

þ σl

�	
ðdiverging spherical waveÞ; ðD16Þ

lim
kr→∞

Hð−Þ
l ðkrg; krÞ ∼ exp

�
−i
�
krþ krg ln 2kr −

πl
2

þ σl

�	
ðconverging spherical waveÞ: ðD17Þ

Their behavior near the origin of the coordinate system,
when r → 0, is

lim
kr→0

Flðkrg; krÞ ∼ clðkrÞlþ1

�
1 −

krg
lþ 1

krþ � � �
	
; ðD18Þ

lim
kr→0

Glðkrg; krÞ ∼
1

ð2lþ 1Þcl
ðkrÞ−l½1þO�;

O ¼
(Oðkrgkr ln krÞ for l ¼ 0;

O


krg
l kr

�
for l ≠ 0:

ðD19Þ

In the case when rg ¼ 0, then up to a factor of kr one

obtains spherical Bessel functions jl, nl, h
ð�Þ
l :

Flð0; krÞ ¼ krjlðkrÞ; Glð0; krÞ ¼ krnlðkrÞ; ðD20Þ

HðþÞ
l ð0; krÞ ¼ krhðþÞ

l ðkrÞ; Hð−Þ
l ð0; krÞ ¼ krhð−Þl ðkrÞ;

ðD21Þ

where jl, nl, h
ð�Þ
l are

jlðkrÞ ¼
�

π

2kr

�1
2

Jlþ1
2
ðkrÞ;

nlðkrÞ ¼ ð−1Þl
�

π

2kr

�1
2

J−l−1
2
ðkrÞ;

hð�Þ
l ðkrÞ ¼ nlðkrÞ � ijlðkrÞ: ðD22Þ

APPENDIX E: REPRESENTATION OF THE
FIELD IN TERMS OF DEBYE POTENTIALS

To represent the EM field equations in terms of Debye
potentials, we start with (7)–(8). Assuming, as usual (we
follow closely the discussion presented in [37], adapted for
the gravitational lens), the time dependence of the field in
the form expð−iωtÞ where k ¼ ω=c, the time-independent
parts of the electric and magnetic vectors satisfy Maxwell’s
equations: Eq. (7)–(8) in their time-free form:

curlD ¼ iku2BþOðG2Þ; ðE1Þ

curlB ¼ −iku2DþOðG2Þ: ðE2Þ

In spherical coordinates (Fig. 1), the field
equations (E1)–(E2) with the help of (A9)–(A10) to order
OðG2Þ become
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−iku2D̂r ¼
1

r2 sin θ

� ∂
∂θ ðr sin θB̂ϕÞ −

∂
∂ϕ ðrB̂θÞ

�
; ðE3Þ

−iku2D̂θ ¼
1

r sin θ

�∂B̂r

∂ϕ −
∂
∂r ðr sin θB̂ϕÞ

�
; ðE4Þ

−iku2D̂ϕ ¼ 1

r

� ∂
∂r ðrB̂θÞ −

∂B̂r

∂θ
�
; ðE5Þ

iku2B̂r ¼
1

r2 sin θ

� ∂
∂θ ðr sin θD̂ϕÞ −

∂
∂ϕ ðrD̂θÞ

�
; ðE6Þ

iku2B̂θ ¼
1

r sin θ

�∂D̂r

∂ϕ −
∂
∂r ðr sin θD̂ϕÞ

�
; ðE7Þ

iku2B̂ϕ ¼ 1

r

� ∂
∂r ðrD̂θÞ −

∂D̂r

∂θ
�
: ðE8Þ

Our goal is to find a general solution to these equations in
the form of a superposition of two linearly independent
solutions ðeD; eBÞ and ðmD; mBÞ that satisfy the following
relationships:

eD̂r ¼ D̂r;
eB̂r ¼ 0; ðE9Þ

mD̂r ¼ 0; mB̂r ¼ B̂r: ðE10Þ

With B̂r ¼ eB̂r ¼ 0, (E4) and (E5) become

iku2eD̂θ ¼
1

r
∂
∂r ðr

eB̂ϕÞ; ðE11Þ

iku2eD̂ϕ ¼ −
1

r
∂
∂r ðr

eB̂θÞ: ðE12Þ

Substituting these relationships into (E7) and (E8) we
obtain

∂
∂r

�
1

u2
∂
∂r ðr

eB̂θÞ
	
þ k2u2ðreB̂θÞ ¼ −

ik
sin θ

∂eD̂r

∂ϕ ; ðE13Þ

∂
∂r

�
1

u2
∂
∂r ðr

eB̂ϕÞ
	
þ k2u2ðreB̂ϕÞ ¼ ik

∂eD̂r

∂θ : ðE14Þ

From divðu2eBÞ ¼ 0 given by Eq. (8) and using our
assumption that eB̂r ¼ 0 we have

∂
∂θ ðsin θ

eB̂θÞ þ
∂eB̂ϕ

∂ϕ ¼ 0; ðE15Þ

which ensures that (E6) is also satisfied, since it becomes,
after the substitution from (E11), (E12),

1

r2 sin θ

� ∂
∂θ ðr sin θ

eD̂ϕÞ −
∂
∂ϕ ðreD̂θÞ

�

¼ −
1

iku2r2 sin θ
∂
∂r

�
r

� ∂
∂θ ðsin θ

eB̂θÞ þ
∂eB̂ϕ

∂ϕ
�	

¼ 0;

ðE16Þ

which is satisfied because of (E15). The complementary
case with mD̂r ¼ 0 is treated identically, in accord
with (E10).
When the radial magnetic field vanishes, the solution is

called the electric wave (or transverse magnetic wave);
correspondingly, when the radial electric field vanishes, the
solution is called the magnetic wave (or transverse electric
wave). These can both be derived from the corresponding
Debye scalar potentials eΠ and mΠ.
Given eB̂r ¼ 0, eD̂ϕ and eD̂θ in (E6) can be represented

as a scalar field’s gradient:

eD̂ϕ ¼ 1

r sin θ
∂U
∂ϕ ; eD̂θ ¼

1

r
∂U
∂θ : ðE17Þ

Using

U ¼ 1

u2
∂
∂r ðr

eΠÞ ðE18Þ

in (E17), we obtain

eD̂θ¼
1

u2r
∂2ðreΠÞ
∂r∂θ ; eD̂ϕ¼

1

u2rsinθ
∂2ðreΠÞ
∂r∂ϕ : ðE19Þ

It can be seen that (E11) and (E12) are satisfied by

eB̂ϕ ¼ ik
r
∂ðreΠÞ
∂θ ; eB̂θ ¼ −

ik
r sin θ

∂ðreΠÞ
∂ϕ : ðE20Þ

If we substitute both of (E20) into (E3) we obtain

eD̂r ¼ −
1

u2r2 sin θ

� ∂
∂θ

�
sin θ

∂ðreΠÞ
∂θ

�
þ 1

sin θ
∂2ðreΠÞ
∂ϕ2

	
:

ðE21Þ

Substituting expressions (E20) into (E13)–(E14)
yields −ik

sin θ
∂
∂ϕ f ∂

∂r ½ 1u2 ∂
∂r ðreΠÞ� þ k2u2ðreΠÞ − eD̂rg ¼ 0

and ik ∂
∂θ f ∂

∂r ½ 1u2 ∂
∂r ðreΠÞ� þ k2u2ðreΠÞ − eD̂rg ¼ 0, i.e.,

the derivative of the same expression with respect to
both ϕ and θ vanishes. This is clearly satisfied if we set
the expression itself to 0. Dividing by u2 and using (E21)
leads to
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1

u2
∂
∂r

�
1

u2
∂ðreΠÞ
∂r

	
þ 1

u4r2 sin θ
∂
∂θ

�
sin θ

∂ðreΠÞ
∂θ

�

þ 1

u4r2sin2θ
∂2ðreΠÞ
∂ϕ2

þ k2ðreΠÞ ¼ 0: ðE22Þ

Defining u0 ¼ ∂u=∂r, this equation may be rewritten as

1

r2
∂
∂r

�
r2

∂
∂r

�eΠ
u

	�
þ 1

r2 sin θ
∂
∂θ

�
sin θ

∂
∂θ

�eΠ
u

	�

þ 1

r2sin2θ
∂2

∂ϕ2

�eΠ
u

	
þ
�
k2u4 þ u00

u
−
2u02

u2

��eΠ
u

	
¼ 0;

ðE23Þ

which is the wave equation for the quantity eΠ=u:

�
Δþ k2u4 − u

�
1

u

�00��eΠ
u

	
¼ 0: ðE24Þ

We are concerned only with the field produced by the
gravitational monopole, thus the quantity u has the from
uðrÞ ¼ 1þ rg=2rþOðr−3; c−4Þ, as given by (B15). With
this, we can rewrite (E24) as

�
Δþ k2

�
1þ 2rg

r

�
þ rg
r3

��eΠ
u

	
¼ Oðr2gÞ: ðE25Þ

Equation (E25) is similar to the Schrödinger equation
of quantum mechanics, used to describe scattering on the
Coulomb potential. However, this equation has an extra
potential of rg=r3. It is known [45] (and also shown in
Appendix F) that the presence of potentials of ∝ 1=r3

in (E25) does not alter the asymptotic behavior of the
solutions. Reference [56] discusses justification for neglect-
ing the r−3 term in (E25), which reduces this equation to the
time-independent Schrödinger equation that describes scat-
tering in a Coulomb potential:

�
Δþ k2

�
1þ 2rg

r

���eΠ
u

	
¼ Oðr2g; r−3Þ: ðE26Þ

In the case of the SGL, we will always be at the distances
which are much larger than the Sun’s Schwarzschild radius,
thus, we may neglect the term rg=r3 in (E25). We will use
(E26) for the purposes of establishing the properties of the
EM wave diffraction by the solar gravitational lens. An
identical equation may be obtained for mΠ.
By means of (E22), Eq. (E21) may be written as

eD̂r ¼
∂
∂r

�
1

u2
∂ðreΠÞ
∂r

	
þ k2u2ðreΠÞ: ðE27Þ

It can be verified by substituting (E19)–(E22) and (E27)
into (E3)–(E8) that we have obtained a solution of our set
of equations. In a similar way we may consider the
magnetic wave. We find that this wave can be derived
from a potential mΠ which satisfies the same differential
equation (E22) as eΠ.
The complete solution of the EM field equations is

obtained by adding the two fields (as discussed in
[37,63,73]), namely D ¼ eDþ mD; and B ¼ eBþ mB;
this gives

D̂r ¼
1

u

� ∂2

∂r2
�
reΠ
u

	
þ
�
k2u4 − u

�
1

u

�00��reΠ
u

	�

¼ −
1

u2r2 sin θ

� ∂
∂θ

�
sin θ

∂ðreΠÞ
∂θ

�
þ 1

sin θ
∂2ðreΠÞ
∂ϕ2

	
;

ðE28Þ

D̂θ ¼
1

u2r
∂2ðreΠÞ
∂r∂θ þ ik

r sin θ
∂ðrmΠÞ
∂ϕ ; ðE29Þ

D̂ϕ ¼ 1

u2r sin θ
∂2ðreΠÞ
∂r∂ϕ −

ik
r
∂ðrmΠÞ

∂θ ; ðE30Þ

B̂r ¼
1

u

� ∂2

∂r2
�
rmΠ
u

	
þ
�
k2u4 − u

�
1

u

�00��rmΠ
u

	�

¼ −
1

u2r2 sin θ

� ∂
∂θ

�
sin θ

∂ðrmΠÞ
∂θ

�
þ 1

sin θ
∂2ðrmΠÞ
∂ϕ2

	
;

ðE31Þ

B̂θ ¼ −
ik

r sin θ
∂ðreΠÞ
∂ϕ þ 1

u2r
∂2ðrmΠÞ
∂r∂θ ; ðE32Þ

B̂ϕ ¼ ik
r
∂ðreΠÞ
∂θ þ 1

u2r sin θ
∂2ðrmΠÞ
∂r∂ϕ : ðE33Þ

Both potentials eΠ and mΠ are solutions of the differ-
ential equation (E24), which, in the case of the weak gravity
characteristic for the SGL, is given by (E26).

APPENDIX F: SOLUTION FOR THE RADIAL
EQUATION IN THE WKB APPROXIMATION

We consider Eq. (E25) for the Debye potentials. Using
the representation given by (62) and remembering
α ¼ lðlþ 1Þ, we obtain the following equation for the
radial function R:

d2R
dr2

þ
�
k2
�
1þ 2rg

r

�
−

α

r2
þ rg
r3

�
R ¼ Oðr2gÞ: ðF1Þ

Following an approach similar to that presented in [59],
we explore an approximate solution to (F1) using the
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methods of stationary phase (i.e., the Wentzel-Kramers-
Brillouin, or WKB approximation). As we are interested in
the case when k is rather large (for optical wavelengths
k ¼ 2π=λ ¼ 6.28 × 106 m−1), we will be looking for an
asymptotic solution as k → ∞. In fact, we will be looking
for a solution in the form of

R ¼ eikSðρÞ½a0ðρÞ þ k−1a1ðρÞ þ � � � þ k−nanðρÞ þ � � ��:
ðF2Þ

Technically, however, it is more convenient to search for a
solution to (F1) in an exponential form:

R ¼ exp

�Z
r

r0

iðkα−1ðtÞ þ α0ðtÞ þ k−1α1ðtÞ þ � � �

þ k−nαnðtÞ þ � � �Þdt
	
: ðF3Þ

Defining R0 ¼ dR=dr, with the help of a substitution of
R0=R ¼ w, for the function w we obtain the following
equation:

w0 þ w2 þ k2
�
1þ 2rg

r

�
−

α

r2
þ rg
r3

¼ Oðr2gÞ: ðF4Þ

Using this substitution we have

w ¼ iðkα−1ðρÞ þ α0ðρÞ þ k−1α1ðρÞ þ � � �
þ k−nαnðρÞ þ � � �Þ: ðF5Þ

Substituting (F5) into (F4) we obtain

k2
�
1þ2rg

r
−α2−1ðρÞ

	
þk½iα0−1ðρÞ−2α−1ðρÞα0ðρÞ�þ iα00ðρÞ

−α20ðρÞ−2α−1ðρÞα1ðρÞ−
α

r2
þ rg
r3
¼Oðr2g;k−1Þ: ðF6Þ

Now, if we equate the terms with respect to the same
powers of k, we get

α2−1ðρÞ ¼ 1þ 2rg
r

; iα0−1ðρÞ − 2α−1ðρÞα0ðρÞ ¼ 0;

iα00ðρÞ − α20ðρÞ − 2α−1ðρÞα1ðρÞ −
α

r2
þ rg
r3

¼ 0: ðF7Þ

These equations may be solved as

α−1ðρÞ ¼ �
�
1þ rg

r

�
; α0ðρÞ ¼ −i

rg
2r2

;

α1ðρÞ ¼∓ α

2r2

�
1 −

rg
r

�
;… ðF8Þ

Using this approach we can identify α1ðρÞ; α2ðρÞ;….
Substituting (F8) into (F3), we have

S−1ðrÞ ¼
Z

r

r0

α−1ð~rÞd~r ¼ �
Z

r

r0

�
1þ rg

~r

�
d~r

¼ �ðrþ rg ln 2krÞjrr0 ; ðF9Þ

S0ðrÞ ¼
Z

r

r0

α0ð~rÞd~r ¼ −
irg
2

Z
r

r0

d~r
~r2

¼ irg
2r

����r
r0

; ðF10Þ

S1ðrÞ ¼
Z

r

r0

α1ð~rÞd~r ¼∓ α

2

Z
r

r0

�
1 −

rg
~r

�
d~r
~r2

¼ � α

2r

�
1 −

rg
2r

�����r
r0

: ðF11Þ

As a result, we obtain two approximate solutions for the
partial radial function Rl:

RlðrÞ ¼ cleiðkS−1ðrÞþS0ðrÞþk−1S1ðrÞÞ

þ dle−iðkS−1ðrÞþS0ðrÞþk−1S1ðrÞÞ

¼ u−1fcleiðkðrþrg ln 2krÞþlðlþ1Þ
2kr ð1−rg

2rÞÞ

þ dle−iðkðrþrg ln 2krÞþlðlþ1Þ
2kr ð1−rg

2rÞÞ þOðr2g; k−2Þg;
ðF12Þ

where cl and dl account for all the constants relevant to the
point r0 in (F9)–(F11).
We note that (F1) is similar to the radial solution of the

Schrödinger equation of quantum mechanics, which is used
to describe scattering in a Coulomb potential. However, this
equation has an extra potential in the form of rg=r3. It is
known [45] that the presence in (F1) of potentials of ∼1=r3
does not alter the asymptotic behavior of the solutions. One
can verify that neglecting rg=r3 in (F1) leads to the
following form of the radial function Rl:

uRlðrÞ ¼ cle
iðkðrþrg ln 2krÞþ1

k½lðlþ1Þ
2r ð1−rg

2rÞþ
rg

4r2
�Þ

þ dle
−iðkðrþrg ln 2krÞþ1

k½lðlþ1Þ
2r ð1−rg

2rÞþ
rg

4r2
�Þ þOðr2g; k−2Þ:

ðF13Þ

We see that the omission of the rg=r3 term in (F1) leads
to appearance of an “uncompensated” term rg=4kr2 ¼
ð1=8πÞðrgλ=r2Þ in the exponent of (F13). This term is
extremely small; it decays fast as r increases, and, thus, it
may be neglected in the solution for the radial function for
any practical purpose. A similar point was made in [56],
suggesting that one can neglect the r−3 terms in (F1) and
reduce the problem to the case of the Schrödinger equation
describing scattering in a Coulomb potential.
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As a result, to describe the scattering of a plane EMwave
by a gravitational monopole, we neglect the term rg=r3 in
(F1) and approximate it such that it becomes

d2Rl

dr2
þ
�
k2
�
1þ 2rg

r

�
−
lðlþ 1Þ

r2

�
Rl ¼ Oðr2g; r−3Þ:

ðF14Þ

Finally, we may further improve the asymptotic expres-
sion for Rl from (F13) by accounting for the Coulomb
phase shifts as given in (D14)–(D17). This can be done by
simply redefining the constants cl and dl as

cl → cleiðσl−
πl
2
Þ; dl → dle−iðσl−

πl
2
Þ: ðF15Þ

This leads to the following expression for the radial
function Rl:

uRlðrÞ ¼ cleiðkðrþrg ln 2krÞþlðlþ1Þ
2kr þσl−πl

2
Þ

þ dle−iðkðrþrg ln 2krÞþlðlþ1Þ
2kr þσl−πl

2
Þ þOðr2g; k−2Þ;

ðF16Þ
where the term rg=2r in the phase was neglected. As the
asymptotic behavior of the Coulomb functions (D14)–(D17)
was obtained for very larger distances from the turning point
(87), or for r ≫ rt, the solution (F16) improves them by
extending the argument of the Coulomb functions to shorter
distances, closer to the turning point. (A similar result was
obtained in [74] using a different approach developed to
study image formation in gravitational lensing [75].)
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