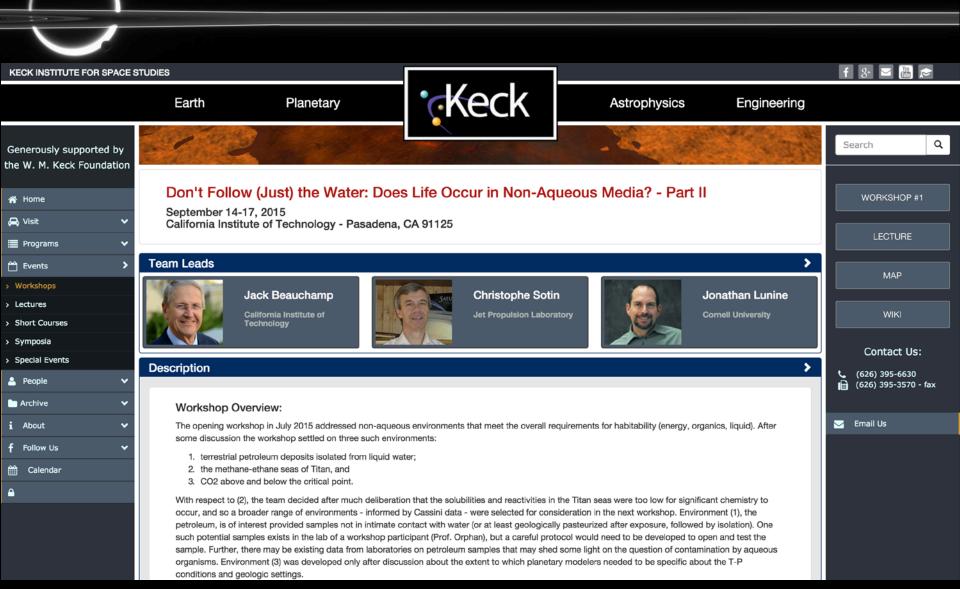
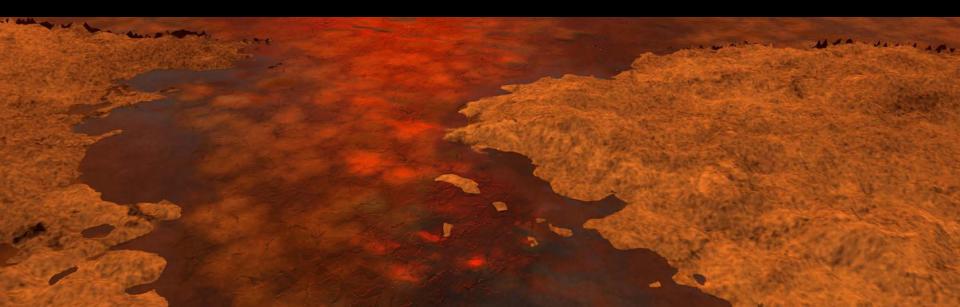
What's Right for Life: Can Life Exist Without Water?


Morgan L. Cable, Jonathan Lunine, Jack Beauchamp and Christophe Sotin

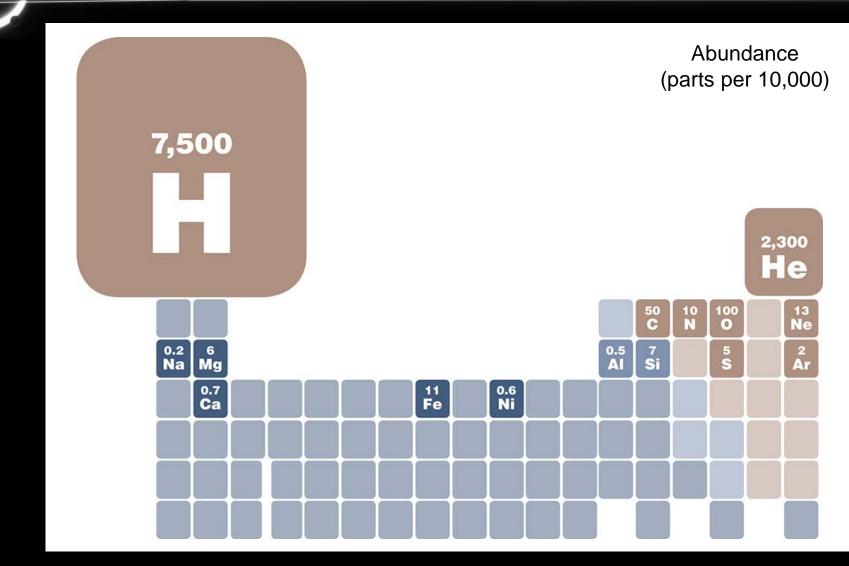
31 October 2015


Jet Propulsion Laboratory California Institute of Technology

Keck Institute for Space Studies

http://kiss.caltech.edu/new_website/workshops/life2.html

- Ammonia (NH₃)
- Liquid carbon dioxide (CO₂)
- Petroleum (oil)
- Hydrocarbons methane (CH₄) and ethane (C₂H₆)



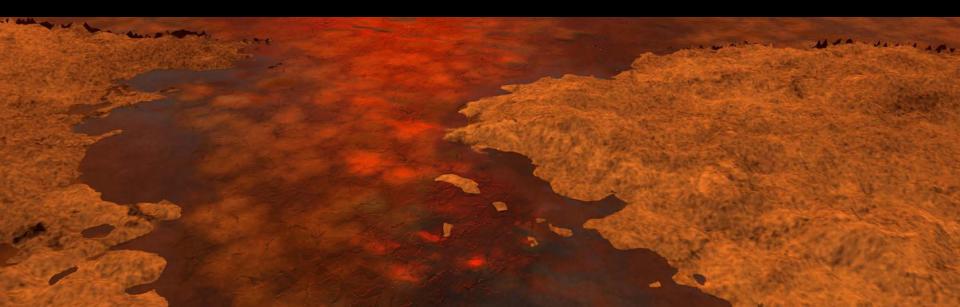
Focus on Carbon-Based Life

1 H																	2 He
3 Li	4 Be											5	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn		114		116		118
		0															
			1														
			Ì.			_				_							-
				58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
				90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

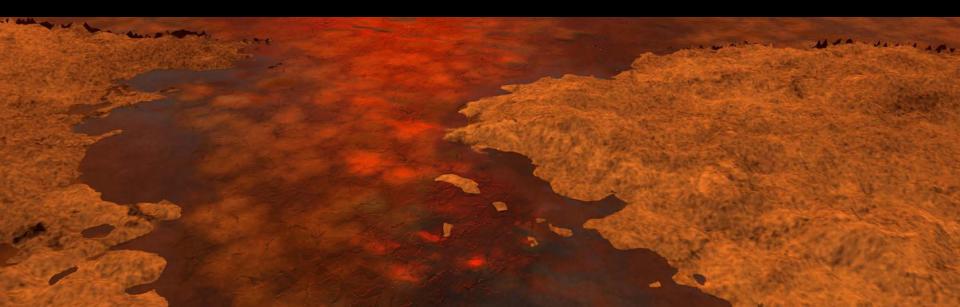
Image credit: NASA/CXC/M.Weiss)

Focus on Carbon-Based Life

Focus on Carbon-Based Life



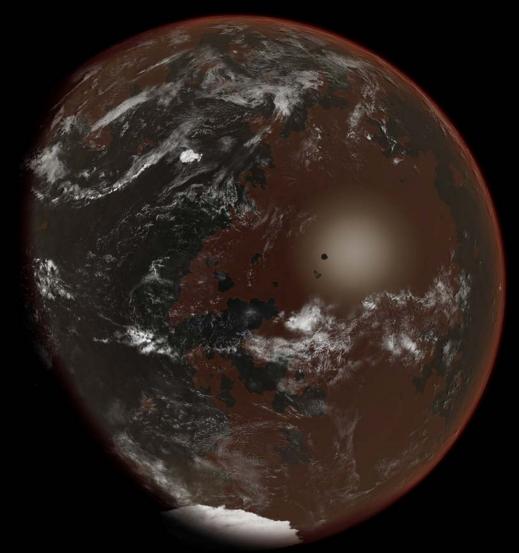
The Horta: silicon-based life in the Star Trek universe


Abundance (parts per 10,000)

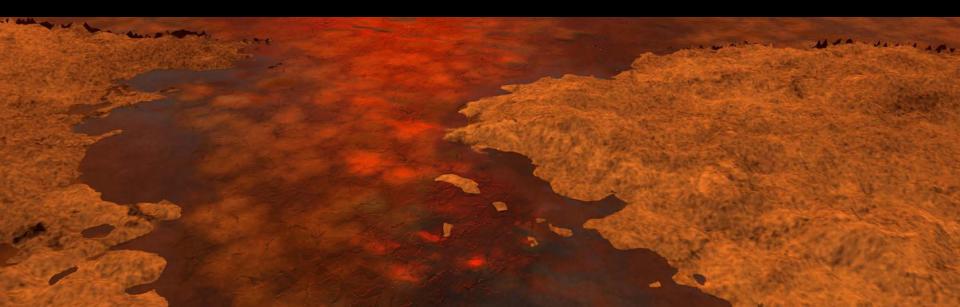
- H Hydrogen: 7,500
- He Helium: 2,300
- O Oxygen: 100
- C Carbon: 50
- Ne Neon: 13
- Fe Iron: 11
- N Nitrogen: 10
- Si Silicon: 7
- Mg Magnesium: 6
- S Sulfur: 5
- Ar Argon: 2
- Ca Calcium: 0.7
- Ni Nickel: 0.6
- Al Aluminium: 0.5
- Na Sodium: 0.2

- Ammonia (NH₃)
- Liquid carbon dioxide (CO₂)
- Petroleum (oil)
- Hydrocarbons methane (CH₄) and ethane (C₂H₆)

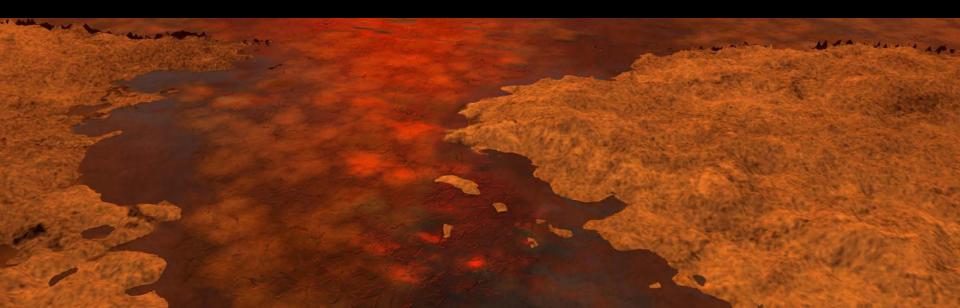
- Ammonia (NH₃)
- Liquid carbon dioxide (CO₂)
- Petroleum (oil)
- Hydrocarbons methane (CH₄) and ethane (C₂H₆)



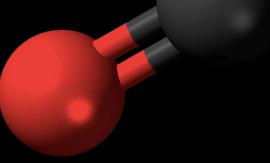
Ammonia NH_3


Image credit: NASA-JPL/Caltech

Ammonia


- Keeps things liquid down to 173 K
- Rare to find without H₂O
- Basically a subset of aqueous case

- Ammonia (NH₃)
- Liquid carbon dioxide (CO₂)
- Petroleum (oil)
- Hydrocarbons methane (CH₄) and ethane (C₂H₆)



- Ammonia (NH₃)
- Liquid carbon dioxide (CO₂)
- Petroleum (oil)
- Hydrocarbons methane (CH_4) and ethane (C_2H_6)

Carbon Dioxide

- Worlds to consider:
 - Venus
 - Earth (subsurface/ tectonic plates)

 CO_2

- Mars (subsurface, ice caps, clathrates)
- Niche environments (CO₂ bubbles, pockets)
- Exoplanets with CO₂ oceans

Carbon Dioxide

- Common in planetary atmospheres
- Comes in two liquid flavors:
 - Liquid CO₂
 - Supercritical CO₂

Supercritical Carbon Dioxide

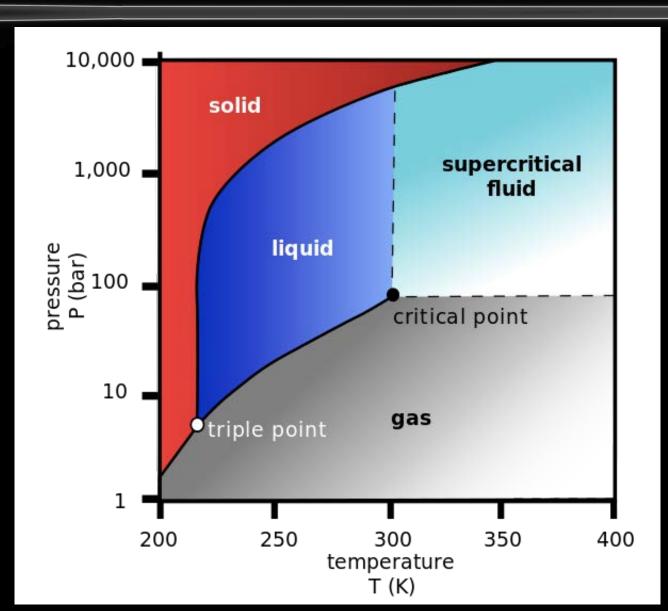
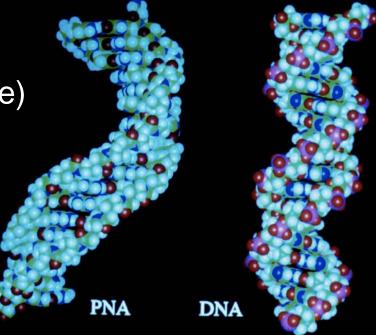



Image credit: Finney and Jacobs

Supercritical Carbon Dioxide

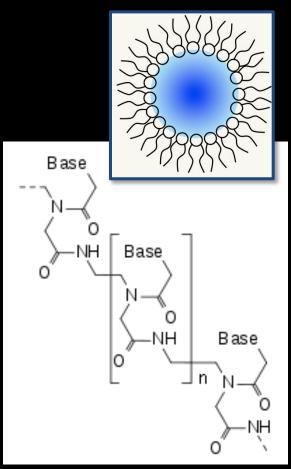
- Different from water
 - Nucleobases (purine, pyrimidine) aren't soluble
- But, many unique properties
 - Acetylated sugars show increased solubility in supercritical CO₂

- Peptide nucleic acids (PNA) can act like DNA and serve as the information backbone in supercritical CO₂
- Also polyethers are very soluble

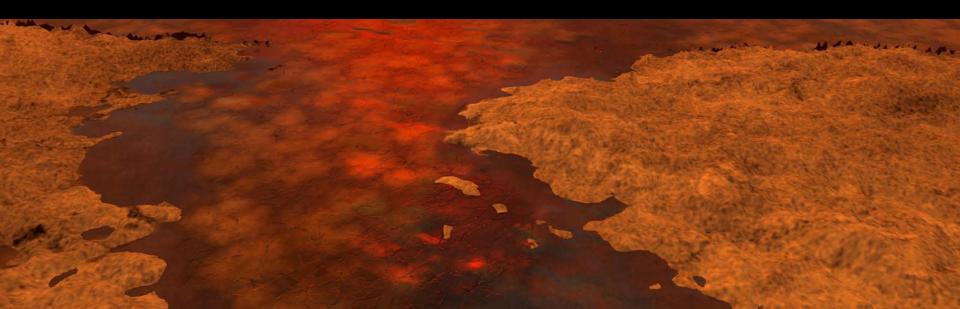
Avoiding Venus

Venus

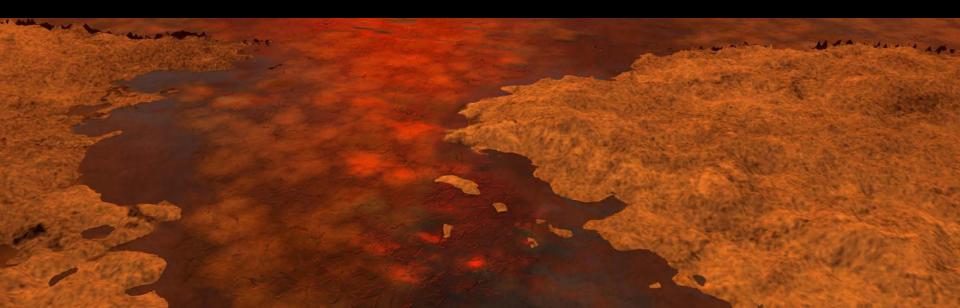
- Challenging to prevent runaway Greenhouse effect
- Adding dissolved N₂, H₂ into the ocean might help stabilize
 - Allows atmosphere to lose heat to space better
 - H₂ atmospheres are stable for Earth-sized planets


Supercritical Carbon Dioxide

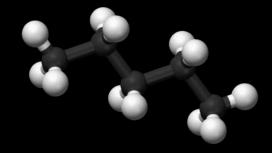
- More theoretical work is needed
 - Radiative convective calculations
 - 3 dimensional global circulation models (GCMs)
 - Include N₂, H₂
 - Trace species
 - Effect of CO₂ clouds
- Lab work is ongoing
 - Peptide backbones as a type of information carrying molecule


Important Issues to Consider

- Contact with/influx of prebiotic molecules as building blocks
- Solubilities of organics, catalytic species
- Unique reactivity of prebiotic molecules in CO₂ environments
- Formation of reverse micelles in supercritical CO₂
- Formation of CO₂ 'bubbles' in water
- Contact with minerals and/or catalytic surfaces in geological environments

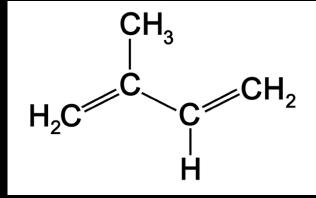


Peptide Nucleic Acid (PNA)

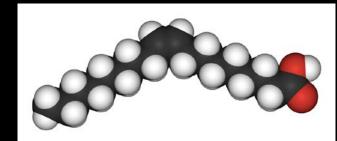

- Ammonia (NH₃)
- Liquid carbon dioxide (CO₂)
- Petroleum (oil)
- Hydrocarbons methane (CH_4) and ethane (C_2H_6)

- Ammonia (NH₃)
- Liquid carbon dioxide (CO₂)
- Petroleum (oil)
- Hydrocarbons methane (CH₄) and ethane (C₂H₆)

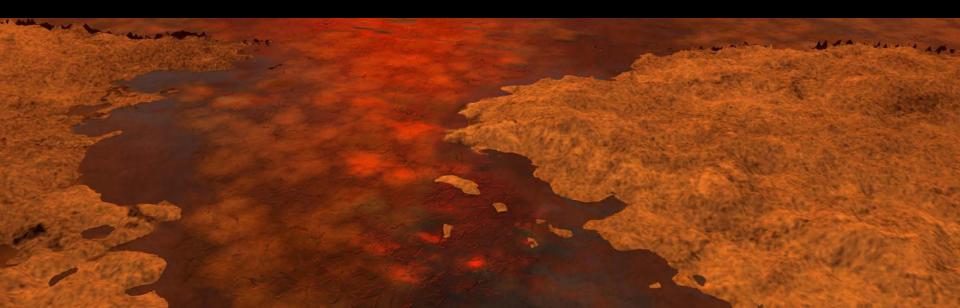
Napthalene

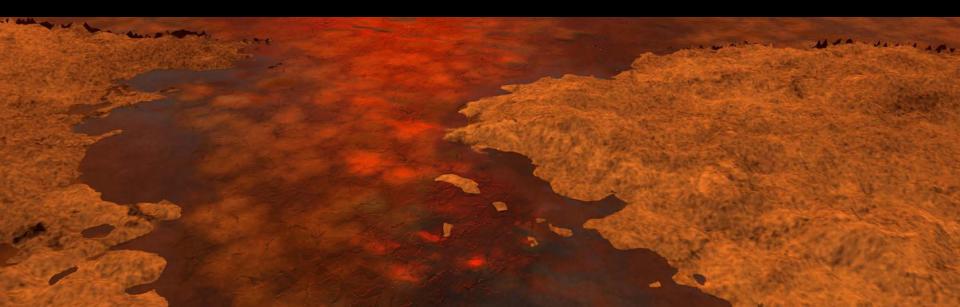

Pentane

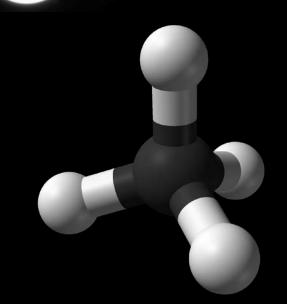
- What could form the compounds of life in petroleum?
 - Isoprenoids
 - Long-chain fatty acids
 - Greasy amino acids (polyisoleucine, polyphenylalanine)
- Sample complexity is enormous
- Difficult to analyze
- Working to identify an environment where there is water-free petroleum
- Life as we know it might use petroleum at interfaces with water



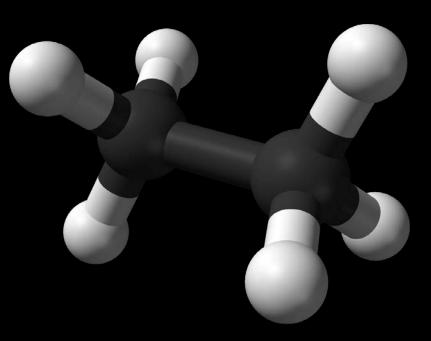
- What could form the compounds of life in petroleum?
 - Isoprenoids
 - Long-chain fatty acids
 - Greasy amino acids (polyisoleucine, polyphenylalanine)
- Sample complexity is enormous
- Difficult to analyze
- Working to identify an environment where there is water-free petroleum
- Life as we know it might use petroleum at interfaces with water


Isoprene

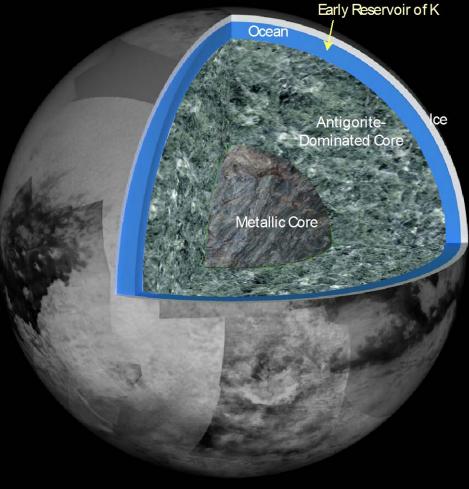

Oleic Acid (C18)


- There could be life in petroleum, but finding it will be challenging
- Look for petroleum deposits on Earth where contact with water has been broken for some amount of time
- Redox and metabolic experiments to identify:
 - Petroleum-associated water-based life as we know it
 - Hydrocarbon-based life as we don't know it
- Baseline abiotic processes in lab, then look at a biological process and see what the deviation is

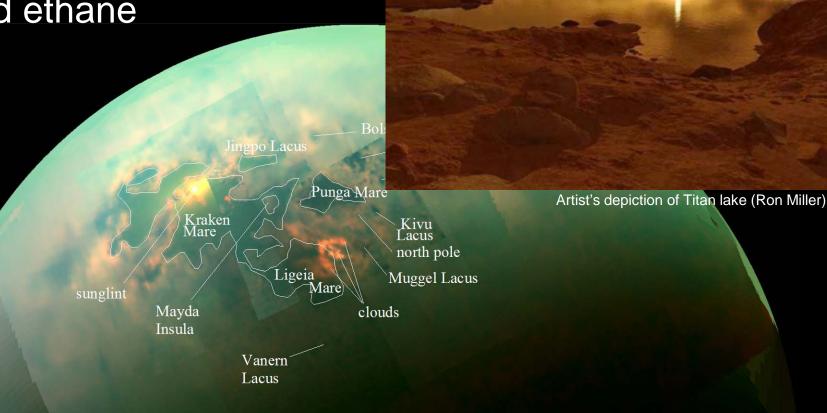
- Ammonia (NH₃)
- Liquid carbon dioxide (CO₂)
- Petroleum (oil)
- Hydrocarbons methane (CH₄) and ethane (C₂H₆)

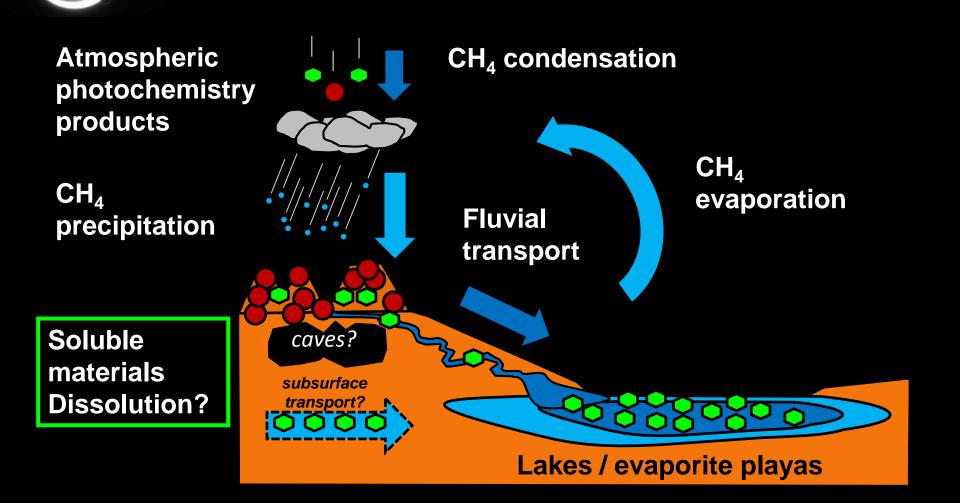


- Ammonia (NH₃)
- Liquid carbon dioxide (CO₂)
- Petroleum (oil)
- Hydrocarbons methane (CH₄) and ethane (C₂H₆)



Methane (CH_4)




Ethane $(\overline{C_2H_6})$

• Titan (moon of Saturn)

- Titan (moon of Saturn)
- Lakes made of methane and ethane

Malaska et al., Workshop on the Habitability of Icy Worlds (2014), Abstract 4020.

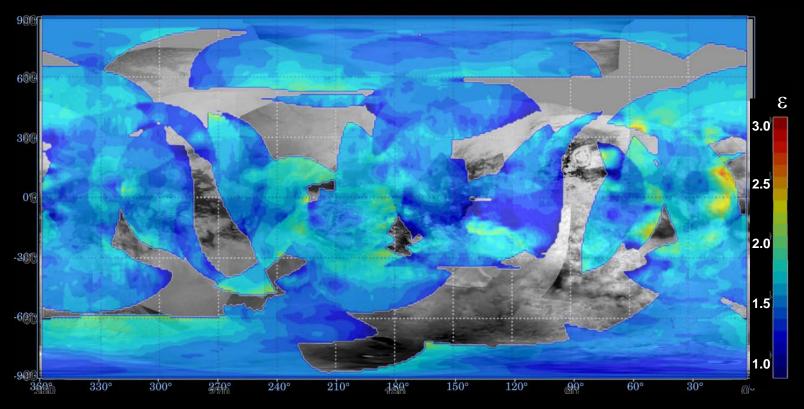
• Solubility of most molecules in liquid methane and/or ethane is poor

Compound	Solubility in Liquid Ethane at 94 K (mg/L)				
Benzene	18.5 ± 1.9				
Napthalene	0.159 ± 0.003				
Biphenyl	0.039 ± 0.006				

Sucrose in water (25 °C): 3,750,000 mg/L Stearic acid (~olive oil): 3 mg/L

Looking to the Shorelines

Solid-Phase Chemistry


• Carbamation $R^{-NH_2} + O^{-C^{-O}} \longrightarrow R^{-N_{-O}} O^{-N_{-O}} O^{-N_{-O}}$

Carbamic acid

- Imine, ether formation
 Polyimine could form a catalytic site
- Azide and alkyne polymerization
 HCN polymerization

Looking for Organic/Ice Interfaces

RADAR – effective dielectric constant is low $\varepsilon = 1.6 - 2.0$ [1] Consistent with organics with voids H_2O ice $\epsilon = 3.1$ Hydrocarbon material $\epsilon = 2.0 - 2.4$ Avg. Titan surface $\epsilon = 1.6 - 2.0$

[1] Janssen et al., Icarus 200 (2009) 222-239.

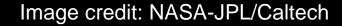

Low Temperature Considerations

- Weaker forces dominate
 - Noncovalent interactions
- We need to rethink our requirements for life

Earth	Titan	Interaction/Bond Strength				
Ionic Bond	Covalent Bond	Permanent or semi-permanent				
Covalent Bond	Hydrogen bonds, π-bonds	Can be made/broken on timescales relevant for life (ATP, proteins, etc.)				
Hydrogen bonds, π-bonds	van der Waals forces	Loose associations that help hold together secondary structures				

Prebiotic versus Protobiotic

- Instead of looking for life itself, target the mechanisms that lead to prebiotic chemistry (aka, Protobiotic chemistry)
 - Geologic patterning
 - Chemical gradients
 - On Earth, this led to more advanced chemistry, which eventually led to life
- How would we see this?
 - Look for differences in orientation and association of chemical subunits
 - Domination of one type of material on Titan (might change with seasons)



Overall Study Findings

- Mars' charter is explicitly, "Follow the Water"
- Our conclusions have found that you may find interesting things apart from water
- Seek out the interfaces!
- Weak interactions may be the key

NASA shouldn't just be looking for areas with liquid water

Happy Halloween from Cassini!

Acknowledgements

- Keck Institute for Space Studies (KISS)
- Office of the Chief Scientist, JPL

