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** Reference star Differential Imaging

From IPAC Science Talk Jan 18th, 2017 "Post-processing techniques for high-contrast imaging & overview of the ALICE program” by Elodie Choquet
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BEERGIES B [ VWEEN PP ANEVVESHE

With the dedicated instruments and search for even better performance contrast, there is
an increasing interest to exploit the information from WFS/C to inform post-processing

Instrument characterization from telemetry data
Vanessa Bailey (GPI) - Julien Milli (SPHERE) - Garima Singh (SCExAQ)
What can we do with current techniques!?

Frame selection - and that’s pretty it for now
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With the dedicated instruments and search for even better performance contrast, there is
an increasing interest to exploit the information from WFS/C to inform post-processing

Instrument characterization from telemetry data

Vanessa Bailey (GPI) - Julien Milli (SPHERE) - Garima Singh (SCExAO)
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What can we do with current techniques!? Question is:

! How can we further improve from there?{

Frame selection - and that’s pretty it for now



BAYESIAN ANALYSIS PROVIDES THE FRAMEWORK
e L Ol | AHON Or T ELEMETRY. [ 4N .-

Assumptions

Data => 1y Coronagraphic data cube
Unknowns => L Planets
Maximization of posterior probability .Z(z|iy) or probability of the unknown given the data
Stochastic framework
Noise statistic gives likelihood -Z’(i)|x) or probability of the data given the unknown

Use Bayes' rule to convert Z(ix|7) into Z(xli)



BAYESIAN ANALYSIS PROVIDES THE FRAMEWORK
e L Ol | AHON Or T ELEMETRY. [ 4N .-

Assumptions Bayes' rule Probability of the
’ unknown
. . LA L(x) g
Data => 1), Coronagraphic data cube L(zliy) = (1/\@ (%) —
Z(iy) Knowledge about
Unknowns => L Planets the instrument

Maximization of posterior probability .Z(z|iy) or probability of the unknown given the data
Stochastic framework
Noise statistic gives likelihood -Z’(i)|x) or probability of the data given the unknown

Use Bayes' rule to convert Z(ix|7) into Z(z[ix)
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Ygouf et al. 2013, A&A
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Ygouf et al. 2013, A&A
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Validation on simulated data
Ygouf et al. 2013, A&A
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Validation on simulated data
Ygouf et al. 2013, A&A

Simulated phase Estimated phase

JWST

.

\w 3 - ~ 3 ce

Simulated phase Estimated phase Residuals



P EINGES

“I think you should be more explicit here in
step two.”




EEEEEENGE | APPLICATION. | O REATE IS
S HARD => WORK IN PROGRESS

Test on realistic simulations: Cantalloube et al. 2017 (AO4ELT)
Implementation of a realistic coronagraph model: Cantalloube et al. 2018 (SPIE)

Upstream Realistic model Ideal model
phase screen used as data used for the inversion — -
Simulated images at 967nm SPHERE-IFS image

From Faustine Cantalloube’s presentation
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Only 6, and the star flux are estimated from the data
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30 nm of downstream aberrations |00 nhm of downstream aberrations

Reconstructed image of the planets B Reconstructed image of the planets Simulated image of the planets

Ygouf 2013, PhD dissertation
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0) Never change two things at the same time

30 nm of downstrex:

|) Changing something on the model changes the shape
of the criterion

2) Requirements on the design have an impact on post-
processing strategy

3) Need to include post-processing as part of the
coronagraph design => DESIGN DIVERSITY

of the planets

Reconstructed imag

4) By doing so it may be possible to relax some of the
designh requirements

PhD dissertation
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Apodizer FPM LS PSFsar PSFno FPM
Example from WFIRST SPC R

PSF is now field-dependent

Courtesy of A.]. Riggs
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e Apodizer FPM LS PSFga PSFoo rpy
Questions are:

PSF is now field-def Does that make the criterion smoother? ‘,
Can we use that as an advantage for PP? '.

Can we find a coronagraph design that
makes the criterion smoother? ‘
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B (S

PP is an essential component of a coronagraphic instrument and improving PP also mean using info from
the instrument

Bayesian formalism provides a way to include information about WFSC and the instrument

Challenges of this kind of techniques lie in application to real data (how well we know the instrument
model and systematics) and in optimization (criterion minimization => shape of the criterion)

Direct imaging of exoplanet may benefit from synergies between PP, WFSC & coronagraph design

R S NP R e . e i es g AP T o i e B e e £ a s P Z o e
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Recommendation:

When designing future high contrast imaging instruments, think about how the
desigh and WFC&S may impact PP



“We choose to go to the Moon in this decade and do the other things, not
because they are easy, but because they are hard.”

—John F. Kennedy

“We went to the Moon, so we should be able to make that
Bayesian stuff work.”



