

Solar Thermal Power System for ISRU Applications Field Deployment and Operation at Mauna Kea, HI

Prepared by:

T. Nakamura and B.K. Smith

Physical Sciences Inc. 6652 Owens Drive Pleasanton, CA 94588

Presented at:

The Space Resources Roundtable (SRR) and The Planetary and Terrestrial Mining Sciences Symposium (PTMSS)

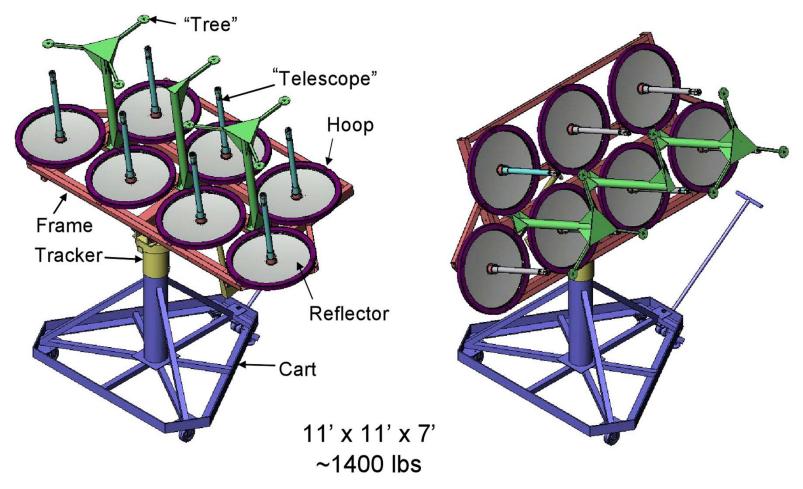
June 8-10, 2010

SBIR Rights Notice (MAR 94)

These SBIR data are furnished with SBIR Rights under Contract No. 2009-33610-19676. For a period of 4 years after acceptance of all items to be delivered under this contract, the Government agrees to use these data for Government purposes only, and they shall not be disclosed outside the Government (including disclosure for procurement purposes) during such period without permission of the Contractor, except that, subject to the foregoing use and disclosure prohibitions, such data may be disclosed for use by support Contractors. After the aforesaid 4-year period, the Government has a royalty-free license to use, and to authorize others to use on its behalf, these data for Government purposes, but is relieved of all disclosure prohibitions and assumes no liability for unauthorized use of these data by third parties. This Notice shall be affixed to any reproductions of these data, in whole or in part.

This material is based upon work supported by the Cooperative State Research, Education, and Extension Service, US Department of Agriculture under Agreement Number 2009-33610-19676 of the Small Business Research Grants Program. Any opinions, finding, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the US Department of Agriculture.

Background



- Solar power is a readily available heat source for in-situresource utilization (ISRU)
- During 1993-1996 Physical Sciences Inc. (PSI) developed a laboratory prototype of the optical waveguide (OW) solar power system for lunar material processing (SBIR Phases I & II by NASA/JSC)
- During 2007-2009, PSI developed the ground-based demonstration system (SBIR Phase III by NASA/GRC)
- The Phase III system was completed in March 2009 and has been tested at ORBITEC for the carbothermal oxygen production program

Solar Concentrator Array with Seven Reflectors

Physical Sciences Inc.

VG10-110-2

Noon Position

Stowed Position

J-8153


Solar Concentrator Tested at PSI: March 2009

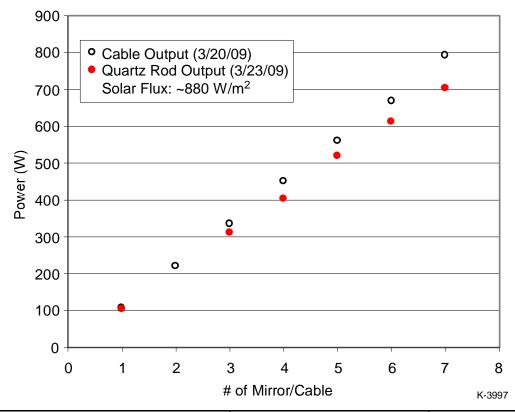
VG10-110-3

Seven concentrators mounted on the tracking array

K-0297

Back of the array with reactor interface

Solar Concentrator: Reactor Interface



The reactor interface with quartz rod

The quartz rod emitting solar radiation

Solar Concentrator Power Output Fiber Cable vs. Reactor Input Optics Physical Sciences Inc.

	Concentrator/Cable (3/20/09)	Quartz Rod (3/23/09)
Ambient Solar Flux (W/m²)	880	880
Power (W)	795	703
System Efficiency (%)	37.8	33.3

Solar Concentrator System Integrated with the ORBITEC Carbothermal Reactor Physical Sciences Inc. ORBII

Assembling the Solar Concentrator Array The Physical Sciences Inc. at Mauna Kea Test Site



K-3562

Solar Concentrator Array Preparing for Solar Sintering of Tephra

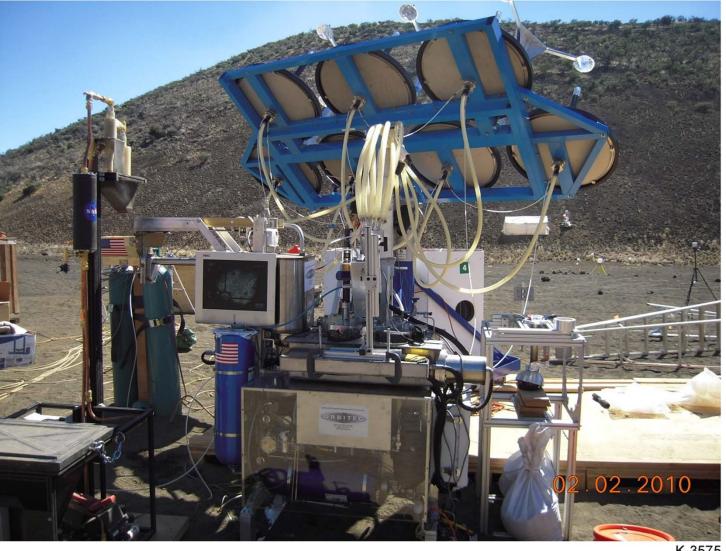
Physical Sciences Inc. _



SBIR Rights in Data

PSI Solar Concentrator Integrated with NORCAT Rastering System

Physical Sciences Inc


VG10-110-9

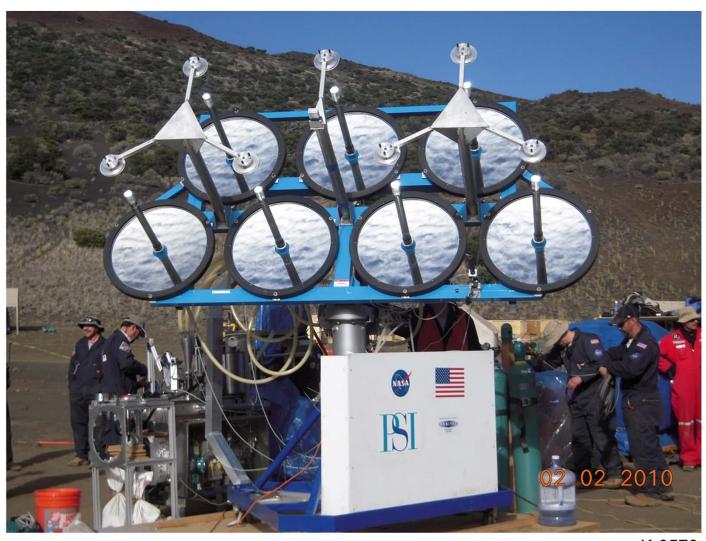
K-3568

PSI Solar Concentrator Integrated with ORBITEC Carbothermal Reactor

VG10-110-10

K-3575

Carbothermal (CT) Reactor Operation

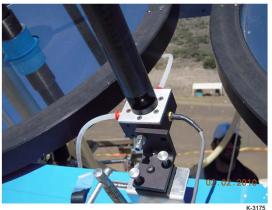

CT reactor displaying the **Tephra melt on screen**

Tephra melt temperature (°C)

Afternoon Cloud Diminishing the Solar Power

Physical Sciences Inc.

VG10-110-12

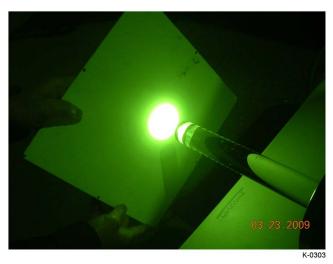


K-3578

Measurement of Ambient Direct Solar Flux

Date	Ambient Solar Flux (W/m²)	Comment
1/28/10	821	Clear but overcast
1/29/10	872 ~ 992	Thin high cloud
1/30/10	821 ~ 889	Partially cloudy
1/31/10	889 ~ 1006	Overcast with high cloud
2/1/10	434 ~ 650	Cloudy
2/2/10	684 ~ 1078	Clear at noon, high cloud towards the end of the day
2/3/10	1000 ~ 1026	Clear
2/4/10	914 ~ 1034	Clear
2/5/10	995 ~ 1078	Clear
2/6/10	944 ~ 1060	Clear
2/8/10	981 ~ 1033	Clear
2/9/10	872 ~ 1051	Warm, Clear with thin high cloud

SBIR Rights in Data


Power Output Measurement

Quartz Rod Output

Performance of the Solar Concentrator System Physical Sciences Inc.

VG10-110-15

	San Ramon, CA	Hawaii Analog Test 2010						
Date	3/20/09	1/29/10	2/3/10	2/4/10	2/5/10	2/6/10	2/9/10	
Solar Flux (W/m²)	880	924	1054	989	1023	1057	859	
Nominal Cable Power (W) Figure of Merit		619 0.282	646 0.256	614 0.259	625 0.2556	707 0.280	557 0.271	
True Cable Output (W) System Eff. (%)	795 37.8	(865)** 39.2*					(657)** 32.0*	
Quartz Rod Output (W) System Eff. (%)	703 33.4					607 24.0		
Comments	Pre-ship test results. Silver coated S.S. Inlet Optics, New Fiber, Clean Mirrors	First test in Hawaii. Al deposited Al Inlet Optics	Mirror dusty	Mirror dusty	Mirror dusty	Dust cleaned from all mirrors	Low flux early in the morning, higher flux (~ 1050) later in the day	

SBIR Rights in Data

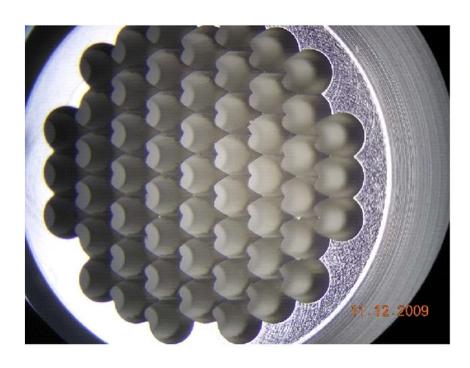
Dust on the Primary Mirror

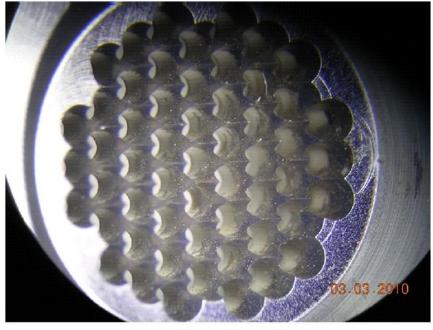
VG10-110-16

K-3589

K-3587

Dust Deposit on the Primary Concentrators


Seven Primary Concentrators Cleared of Dust Deposit


10% Power Increase by Cleaning

Effect on Cable Inlet

VG10-110-17

K-3571

New Cable Inlet

Cable Inlet After Test

Deterioration of cable inlet decreased performance by 6%

Summary

- PSI team deployed and operated the solar concentrator system in environments that are not encountered in laboratory test setting
 - Solar flux varied in a broad range (450~1050 W/m²)
 - Dust effects on primary reflector and cable inlet
 - Freezing temperature in the night
- PSI/NORCAT Team demonstrated solar sintering of Tephra
 - Lunar surface stabilization with solar thermal sintering of regolith
 - Sintered a 15 in x 15 in Pad
 - Single layer due to time constraint
- PSI/ORBITEC Team conducted a series of Carbothermal (CT) oxygen production experiments
 - Tephra melt at 1700~1800 C
 - 16 successful CT reaction tests

Remote Operation from NASA/JSC

Physical Sciences Inc.

VG10-110-19

PSI Solar Concentrator (middle), ORBITEC CT Reactor (right) and NASA/JSC Water Electrolizer (left) operated remotely from Houston, TX

Acknowledgements

- The PSI team would like to thank those who helped us in preparation, setup, deployment and operation of the solar concentrator
- Collaborations with NORCAT and ORBITEC personnel have been very effective, stimulating and rewarding
- Our participation in the ISRU Analog Test, Mauna Kea, HI was made possible by the Phase III SBIR contract administered at NASA/KSC (mnk10ea03P), Dr. Anthony Muscatello, the technical contact
- The solar concentrator system deployed at Mauna Kea was developed under the SBIR Phase III program supported by NASA/GRC, Dr. Alloysius Hepp, the technical contact

Unsung Hero Leveling the Test Site

SBIR Rights in Data