

Interferometry 101

Gerard van Belle (Lowell Observatory)

Basic Science Motivation

Angular Resolution Makes Discoveries

Stellar Angular Sizes (Back of the envelope)

- Use the sun as our prototype
- Solar vs. bright star apparent brightness:

$$V_{\Theta} - V = -2.5 \log(I_{\Theta}/I)$$
 $\rightarrow 2.5 \times 10^{10}$ change in apparent brightness

- ▶ Since the sun is ~30' $\rightarrow \theta_* = 12$ mas
- Realized by Newton

Interferometry: 'Silver Bullet Science'

- A very good analogy
 - Very expensive
 - Very hard to get to work
 - But, it gets results that are otherwise impossible
- And it's kind of magical

Interferometry: 'Silver Bullet Science'

- Not something for everyone –
 sacrifices are made
 - Interferometers aren't very sensitive
 - Interferometers don't make 'pretty pictures'
- But occasionally you have a werewolf to deal with

A Crash Course in Interferometry

The Telescope: What's Happening Inside?

 Our parallel rays enter and bounce around – in a very special way

The Telescope: What's Happening Inside?

When light rays from a source satisfy this pathlength condition, the can form an image

The Telescope: What's Happening Inside?

This pathlength condition is true for other nearby stars in the field of view of the telescope, at slightly different angles

In the Pursuit of Clever (at the risk of Stupid)

Here's a neat trick: satisfy the pathlength condition with separate pieces of glass for your primary mirror

Cracking the Resolution Problem

Taking the neat trick even further: really chop up your telescope into a long baseline interferometer

Can make the 'diameter' very big

Cracking the Resolution Problem

▶ Taking the neat trick even further: really chop up your telescope by making it many telescopes

 Still have to satisfy the pathlength condition, though

Important caveat:

Doing things this way tends to sacrifice a lot of 'field of view' of your instrument

Cracking the Resolution Problem

Delay lines let you have telescopes scatter across the landscape at unequal distances

Things Move Around On Their Own

- Earth's rotation move telescopes relative to each other
- Delay lines are needed to account for diurnal motion

- Delay lines track changes in pathlength
 - just like telescopes track stars as they move across the sky

What Does an Interferometer 'See'?

What Does an Interferometer 'See'?

Observing Small Stars

- For a very small point-like star, fringes will be high contrast
- ▶ By 'very small', I mean ϑ < 0.25mas

Observing Large Stars

- ▶ For a large **resolved** star, fringes will be high contrast
- ▶ By 'large', I mean $\vartheta \approx 0.5$ -3 mas (in the case of NPOI)

Why is This?

- Light from different sides of the star correspond to different pathlengths
- Optical path = interferometer pointing
- The interferometer sees both fringe packets simultaneously, overlapping

NB. can 'overresolve' large sources

Why is This?

- For a small star, there is only one pathlength
- The interferometer still sees both fringe packets simultaneously, but they don't smear each other out

Mozurkewich's Law

Mozurkewich's Corollary to Mozurkewich's Law

"Determine what it is that you can measure, and declare it is therefore interesting."

What does a Fringe *Actually* Look Like?

- Constructive & destructive interference of light
- Fringe contrast or visibility:

$$V = \frac{I^+ - I^-}{I^+ + I^-}$$

Actual starlight fringes from IOTA - β And Photo credit: R.R. Thompson

Interferometric Arrays

- Use multiple telescopes as a single telescope
- Break the resolution limit without breaking the bank
- Already an established technique for radio wavelengths
 - But much more difficult in the visible
 - Radio: Detect-and-mix
 - Optical: Mix-and-detect

← Charlie Townes:

"It's because the value of ħ is what it is."

Array

Delay Lines at Keck

Keck in Motion

Techniques:
Differential Phase &
Baseline
Bootstrapping

Differential Phase (aka Wavelength Bootstrapping)

Differential Phase demo

- ▶ PRIMA+MIDI demonstration (2009)
 - FTK errors reduced by order of magnitude
 - Sensitivity >>3x MIDI-alone limit
- Technique proposed in 1992 as method to detect 'hot Jupiters' by Colivta & Shao
 - Not pursued, everyone 'knew' that Jupiters would be neither hot nor close to host star

Baseline (+wavelength) Bootstrapping

- Fringe amplitude decreaseswith increasing baseline
- Can phase on multiple short baselines

Example: NPOI (newClassic, NIR-FTK)

- Long baseline phasing then comes 'for free'
- Can phase unit baselines at longer wavelengths for increased fringe amplitude, too
- A way to beat 'Mozurkewich's Law'

Technique: Nulling

Nulling

Nulling

Nulling (zoom)

Nulling (zoom)

Nulling (two body case)

 Null out starlight, but keep planet light constructively interfering

Nulling (star + planet)

 Null out starlight, but keep planet light constructively interfering – planet is typically much dimmer, though

Nulling, Double Bracewell

- Going from two to four apertures for a 'double Bracewell'
- Wider, deeper null

Angel & Woolf, 1997

Technique: Astrometry

Astrometry: Simple in Principle

- Two angularly separated objects
- Fringe peaks show up separated in delay space
- Scanning in delay to detect, measure peak separation
- ▶ Linear separation → angular separation

(NB.This is the 'narrow angle' variant)

Astrometry: Insanely Hard in Practice

- Where to separate beams?
 - Back end
 - Field separator at telescopes
- What baseline does each star 'see'?
- Differences in delay space: separation or something else?
 - Pathlength monitoring: how to do?

Example: PTI, VLTI+PRIMA, VLTI+Gravity CHARA+Armada, VLTI+Gravity-Wide

Astrometry: Insanely Hard in Practice

- 'Wide angle' Variant
- Monitor telescope positions (~um), all pathlengths with laser metrology (~nm) (blue)

Example: NPOI

Phase Referencing: Same Basic Architecture

- For 'bright-faint' imaging
 - Use bright object to phase array, 'stare' at dim object
 - Only need to track fringes to optical tolerances (~10nm)
 - Baseline knowledge only needed to a ~few mm
- ▶ Eliminates significant amounts of metrology
- Limited on ground to atmospheric isoplanatic angle

Example:VLTI+Gravity 'imaging'

Questions?

Food for Thought

 You are allowed one miracle per mission' - Chas Beichman

▶ Each one of these is a separate miracle: Interferometry, formation flying, nulling