
© 2015 Carnegie Mellon University

QoS-enabled Large-scale Group 
Autonomy (ELASTIC)

Presenter: James Edmondson
(jredmondson@sei.cmu.edu)

Date: February 18, 2015



2
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract 
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering 
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING 
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY 
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY 
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR 
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. 
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH 
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or 
electronic form without requesting formal permission. Permission is required for any other use. 
Requests for permission should be directed to the Software Engineering Institute at 
permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0002124



3
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

Problems facing large-scale group 
autonomy in real-world missions
1. Centralized controllers are too easy to attack, and suffer during 

natural disconnects in wireless environments

2. AI platforms tend to rely on blocking, reliable communication 
that creates brittle AI

3. Most AI focuses on self-interested, isolated agents in simple 
missions or preplanned missions that do not adapt well to 
group objectives

4. AI platforms tend to not be feature rich, do not provide 
configurable quality-of-service levels, and only support very 
limited types of AI, learning and platforms

Intro MADARA GAMS Conclusion



4
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

Challenge 1 & 2: A normal mission environment is very unforgiving 
toward centralized planners and controllers

• Environment can have obstacles or 
natural interference in mission 
areas

• Adversaries can make this problem 
even worse with jamming

• TCP causes resends of old 
information, can block the AI loop, 
and causes AI to lag and eventually 
stall

• Solution: Stop using centralized 
planners and blocking, reliable 
communication

• Solution: Focus on best effort 
with resends of important 
information between 
decentralized agents

Intro MADARA GAMS Conclusion



5
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

Challenge 3: Pre-planned AI does not deal well with adaptation. 
Self-interested agents don’t always do well with group missions.

• Many research groups use pre-
planned AI pushed to each 
individual agent before a task

• Adversaries can exploit this stale 
plan

• The mission itself may change and 
communication becomes a 
problem (see Challenge 1 and 2)

• Solution: Focus on decentralized 
AI with best-effort 
communication that can be 
rebroadcasted by agents and 
allows important information to 
be resent periodically

• Solution: Provide mechanisms 
for dynamic adaptation and 
change via configurable 
middleware

pr
ep

la
nn

ed
D

yn
am

ic
al

ly
 

re
pl

an

Intro MADARA GAMS Conclusion



6
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

Challenge 4: AI platforms provide limited QoS, support limited 
hardware, architectures, and platforms

• A single bursting AI agent 
connected to networking 
middleware can overwhelm 
communication (see ROS)

• AI implementations are rarely 
hardware or platform agnostic

• Solution: Build QoS into AI 
middleware as first class entity

• Solution: Be more portable 
(architecture, languages, 
simulators, etc.)

Intro MADARA GAMS Conclusion



7
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

Our Approach to Group 
Autonomy

1. Create a portable, open-sourced, 
decentralized operating environment for 
autonomous control and feedback. Focus 
on scalability, performance and 
extensibility

2. Design algorithms and tools to perform 
mission-oriented tasks like area coverage 
and multi-agent shielding of important 
assets

3. Integrate the operating environment into 
unmanned autonomous systems (UAS), 
simulators, platforms, smartphones, 
tablets, and other devices. Focus on 
portability.

Intro MADARA GAMS Conclusion



8
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

FY 2014 Technologies/Platforms
We investigated several platforms and 
collaborations in FY 2014, including:

• UAVs (Parrot and 3D Robotics)

• Simulations (VREP)

• Smartphones, Tablets (Android)

• High precision and gps-denied positioning

FY 2015 is focusing on autonomous swarms of 
25+ boats (Platypus/CMU collaboration)

Intro MADARA GAMS Conclusion



9
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

MADARA

How our technologies are being used
FY 2013-2014 architecture for Drone-RK/CMU 
collaboration

Intro MADARA GAMS Conclusion

GAMS Controller 

GAMS

GAMS Platform for 
Parrot Ar.Drone 2.0

MADARA
UDP Broadcast

KaRL Interpreter

G
U

I/t
er

m
in

alCustom Commands

CMU Student Development
SEI Staff Development



10
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

MADARA

How our technologies are being used
FY 2015 architecture for Platypus/CMU 
collaboration

Intro MADARA GAMS Conclusion

GAMS Controller 

GAMS

GAMS Algorithm 
and Boat Platform

B
oa

t S
er

ve
r

CMU Student Development
SEI Staff Development

MADARA B
oa

t P
ro

xy

UDP

SAMI Planner

Task Decomposition

Boat Images © 2013-2014 Platypus LLC

Custom Commands



11
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

Principles of our open-sourced middleware (MADARA and 
GAMS)
1. Be useful to application developers

2. Enable distributed, decentralized artificial intelligence including machine 
learning, reinforcement learning, fuzzy logic, and rule-based state 
machines

3. Be fast, small, and capable

4. Be portable to as many platforms relevant to UAS as possible

5. Provide configurable quality-of-service in all middleware features to 
enable developers to have more control over artificial intelligence and 
communication between agents

6. Be extensible to facilitate new transports, linking with external libraries, 
security, assurance, and consistency

7. Provide extensive documentation

Intro MADARA GAMS Conclusion



12
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

MADARA Architecture
More information, tutorials, and documentation at http://madara.googlecode.com

User 
Code

Knowledge 
Base

Logger

Native User 
Functions

Transport

Filters

Bandwidth 
Monitor

Packet 
Scheduler

Network

User OS/file

KaRL Transport

Legend

System 
Calls

OS/file

Intro MADARA GAMS Conclusion

Threads

http://madara.googlecode.com/


13
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

MADARA Architecture
More information, tutorials, and documentation at http://madara.googlecode.com

User 
Code

Knowledge 
Base

Logger

Native User 
Functions

Transport

Filters

Bandwidth 
Monitor

Packet 
Scheduler

Network

User OS/file

KaRL Transport

Legend

System 
Calls

OS/file

Intro MADARA GAMS Conclusion

Threads

Features at the Knowledge Engine Level

1. O(1) access times via containers and 
knowledge references (nanosecond 
performance)

2. Allow dynamic changing of programs via 
real-time scripting language, multiple 
programming models (state-based and 
event-based)

3. Can wait for knowledge to be a certain 
condition, with periods and timeouts

http://madara.googlecode.com/


14
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

MADARA Architecture
More information, tutorials, and documentation at http://madara.googlecode.com

User 
Code

Knowledge 
Base

Logger

Native User 
Functions

Transport

Filters

Bandwidth 
Monitor

Packet 
Scheduler

Network

User OS/file

KaRL Transport

Legend

System 
Calls

OS/file

Intro MADARA GAMS Conclusion

Threads

At the threading level

1. Provide configurable hertz rate for controllable 
AI logic execution

2. Provide configurable, cancelable duration of AI

3. Provide interface for control and data plane 
access

4. An agent itself can be multi-agented with 
threads collaborating for an overall self-interest 
goal

http://madara.googlecode.com/


15
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

MADARA Architecture
More information, tutorials, and documentation at http://madara.googlecode.com

User 
Code

Knowledge 
Base

Logger

Native User 
Functions

Transport

Filters

Bandwidth 
Monitor

Packet 
Scheduler

Network

User OS/file

KaRL Transport

Legend

System 
Calls

OS/file

Intro MADARA GAMS Conclusion

Threads

At the networking level

1. Provide configurable read hertz rates on 
UDP-based networking transports

2. Dozens of configurable options for 
knowledge deadlines, reliability, and 
bandwidth control at send, receive, and 
rebroadcast levels

3. Custom user filters for responding to 
networking events to enhance QoS further

4. Multi-threaded networking support

http://madara.googlecode.com/


16
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

Potential Real World Questions
• How could I use MADARA for distributed machine learning?

Intro MADARA GAMS Conclusion

• The easiest method of doing this would be to connect your current 
learning functionality to the MADARA knowledge base by using 
knowledge containers

• Another option would be to call learning functions/libraries when 
data is received

// create containers
containers::Integer danger (“agent.0.danger”, knowledge);
containers::Double classifier (“agent.0.utility”), knowledge);

// update knowledge base with results of machine learning
danger = learn_danger (current_state);
classifier = learn_classifier (current_state);

// aggregate updates to danger and classifier and send them
knowledge.send_modifieds ();



17
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

Potential Real World Questions
• How could I use MADARA for transfer learning?

Intro MADARA GAMS Conclusion

• The previous example does transfer the results of learning

• A new agent could simply use another agent’s learned state (e.g. 
danger and/or classifier in previous example)

• A more complex solution could have a new agent use a heuristic to 
aggregate all agent learned state into the best known learned state



18
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

Potential Real World Questions
• How do I send reliable knowledge?

Intro MADARA GAMS Conclusion

• The default transports are best effort

• Assumption is that important information gets resent until 
acknowledgments from the agents arrive

• Reliability is unlikely to be necessary for all information (e.g., receipt 
of transfer learning) but very likely for commands or mission 
changes (e.g., enemy found, stop patrol, hide)

• If all information is important, MADARA does support RTI and 
PrismTech DDS, which support reliable communication of all 
knowledge

• Developers must understand what happens to a reliable 
transport (e.g., unbounded buffer growth) in a wireless 
disconnected environment



19
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

Key MADARA Features (2009-present)
• Allows developers to write both state-based and event-based programs 

(or combinations of both) for distributed artificial intelligence

• Programs can react to receive, send, or rebroadcast events

• Programs can have deadline-enforced periodic executions, wait for 
certain state-based conditions to come true, or execute efficient, 
dynamic actions in KaRL (Knowledge and Reasoning Language)

• Provides object-oriented containers and threads as first class entities

• Supports C++, Java, Python, ARM, Intel, Windows, Linux, Android, iOS

• Supports IP multicast, broadcast, unicast, OMG DDS transports

• Enforces consistency of updates through Lamport clocks, priorities

• Extensible transport layer, filtering system, and callbacks

• Extensive documentation (guides, tutorials, doxygen)

Intro MADARA GAMS Conclusion



20
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

How MADARA helps researchers and developers
• Facilitates distributed and multithreaded programming

• Networking and threading is provided

• Performance and scaling is exceptional

• Language and architecture portability to prevent vendor lock-in and 
shorten transition timeframe

• Open source. Free. Extensible.

• Allows reseachers to focus on what is important to them

• Quickly code and experiment with multi-processed, multi-threaded, 
or multi-robot applications with dependable, portable code

• Scale to thousands of collaborating entities in real-time

Intro MADARA GAMS Conclusion



21
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

GAMS Architecture (FY 2014)
1. Built directly on top of MADARA

2. Utilizes MAPE loop (IBM autonomy construct)

3. Provides extensible platform, sensor, and algorithm support

4. Uses new MADARA feature called Containers, which support object-oriented 
programming of the Knowledge Base

Intro MADARA GAMS Conclusion



22
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

MADARA

How our technologies are being used
FY 2013-2014 architecture for Drone-RK/CMU 
collaboration

GAMS Controller 

GAMS

GAMS Platform for 
Parrot Ar.Drone 2.0

MADARA
UDP Broadcast

KaRL Interpreter

G
U

I/t
er

m
in

alCustom Commands

CMU Student Development
SEI Staff Development

Intro MADARA GAMS Conclusion



23
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

MADARA

How our technologies are being used
FY 2015 architecture for Platypus/CMU 
collaboration

GAMS Controller 

GAMS

GAMS Algorithm 
and Boat Platform

B
oa

t S
er

ve
r

CMU Student Development
SEI Staff Development

MADARA B
oa

t P
ro

xy

UDP

SAMI Planner

Task Decomposition

Boat Images © 2013-2014 Platypus LLC

Custom Commands

Intro MADARA GAMS Conclusion



24
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

GAMS Architecture (FY 2014)

Key points:

• During the MAPE loop, the context is locked from external updates

• At the end of the MAPE loop, all global variable changes are aggregated 
together and sent to other UAS participating in the mission

Intro MADARA GAMS Conclusion



25
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

GAMS Platform and Algorithm Interactions

The Monitor, Plan, and Execute phases are pretty straight-forward

Intro MADARA GAMS Conclusion



26
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

GAMS Platform and Algorithm Interactions

During the analyze phase:

1. The platform analyzes its state and informs the rest of the GAMS system via 
MADARA variables

2. The system analyzes the platform and environment for algorithm changes

3. The algorithm then analyzes its state and sets appropriate MADARA variables.

Intro MADARA GAMS Conclusion



27
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

GAMS Platform and Algorithm Interactions

About system_analyze ():

1. The platform can inform the control loop of gps-spoofing, if it has capabilities

2. Check_gps () is also intended to implement gps-spoof checking in software

3. Environmental or platform characteristics can result in changes to the platform 
(e.g., an arm is damaged) or algorithm (e.g., the UAS should return home)

Intro MADARA GAMS Conclusion



28
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

How to use GAMS with new platforms and algorithms
1. Extend the platform base class

• Implement move (), land (), takeoff (), or other functions

• Implement sense ()

• Implement analyze ()

2. Extend the algorithm base class
• Implement analyze ()

• Implement plan ()

• Implement execute ()

3. Extend the base controller class (optional)
• Override MAPE methods

4. Use the parameterized Mape_Loop class (optional)
• Use the define_monitor, define_analyze, etc. methods with MADARA 

functions

Intro MADARA GAMS Conclusion



29
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

What exactly are we solving?
1. MADARA is a bit expansive in its capabilities and developers can find 

themselves pulled in many different directions when thinking of autonomy to 
implement. GAMS provides an interface for algorithms and platforms 
to be added and utilized within a wireless environment

2. GAMS provides mechanisms for tracking platform and algorithm 
states and characteristics of distributed applications, such as detection 
of GPS-spoofing, blocked/deadlocked conditions within algorithms, low 
battery, degraded sensors, etc.

3. While MADARA may support any type of distributed artificial intelligence 
paradigm, GAMS provides a stable, consistent framework for group 
autonomous behaviors and may prove beneficial to standardization 
efforts for group autonomy 

Intro MADARA GAMS Conclusion



30
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

New Features in FY 2015
1. Tighter and more feature rich MADARA interactions

• GAMS can now be directly ran inside of MADARA thread library

• GAMS can now run at multiple hertz speeds for sampling sensors at 
varying rates

• GAMS may have separate sampling and sending hertz rates

2. Multiple platform support in VREP and real-world

• VREP: Quadcopter, Ant, and possibly Boat models and platforms (Q2-
3 2015)

• Real World: Drone-RK quadcopter and Platypus boat

3. Even more focus on scale and reliability

4. Distributed mission-focused algorithms that respond to environment 
and mission objective changes

Intro MADARA GAMS Conclusion



31
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

FY 2015 Goals and Objectives (ELASTIC Project)
1. Showcase GAMS and MADARA on 25+ real, collaborating robots

• Focusing on Paul Scerri’s robotic boats (Platypus/CMU)

• Focus on dynamic adaptation in contested/deprived environments

2. Facilitate transition of GAMS/MADARA into DARPA or DoD Labs

3. Quantify scalability limitations

4. Identify best practices for developing distributed mission-focused autonomy 
applications

Intro MADARA GAMS Conclusion



32
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

Closing remarks
In this talk, we’ve discussed

• A distributed reasoning engine called MADARA that provides portable, fast 
reasoning services for distributed artificial intelligence

• An extensible framework called GAMS for distributed algorithms and platforms 
that enables Monitor-Analyze-Plan-Execute-based distributed autonomous systems

Intro MADARA GAMS Conclusion



33
ELASTIC 2015, QoS-enabled Autonomy

© 2015 Carnegie Mellon University

FY 2014 Open Source Release
The algorithms, tools, and middleware created at 
SEI are released via BSD-style licenses through 
the following projects:

• Multi-Agent Distributed Adaptive Resource 
Allocation (MADARA) for the distributed OS 
layer: http://madara.sourceforge.net/

• Group Autonomy for Mobile Systems (GAMS) 
for the algorithms and UIs: http://gams-
cmu.googlecode.com

• Model Checking for Distributed Applications 
(MCDA) http://mcda.googlecode.com

• Drone-RK for the UAV device drivers: 
http://www.drone-rk.org

• Contact: jredmondson@sei.cmu.edu

SEI Project Members

James Edmondson

Sagar Chaki

David Kyle

HCCPS/DART Group

CMU Project Members

Paul Scerri

Nate Brooks

Christopher Tomaszewski

Vanderbilt Students

Anton Dukeman (CS)

Intro MADARA GAMS Conclusion

http://madara.sourceforge.net/
http://gams-cmu.googlecode.com/
http://mcda.googlecode.com/
http://www.drone-rk.org/
mailto:jredmondson@sei.cmu.edu

	QoS-enabled Large-scale Group Autonomy (ELASTIC)
	Slide Number 2
	Slide Number 3
	Challenge 1 & 2: A normal mission environment is very unforgiving toward centralized planners and controllers
	Challenge 3: Pre-planned AI does not deal well with adaptation. Self-interested agents don’t always do well with group missions.
	Challenge 4: AI platforms provide limited QoS, support limited hardware, architectures, and platforms
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33

