An Airship Platform vs A Tethered Balloon Platform for Science Applications

Robert Fesen Dartmouth

<u>Advantages of a Tethered Balloon Platform</u>

A high altitude balloon platform that is tethered to the ground doesn't have some of the mass associated with an airship's power and recovery systems.

- no propulsion motors
- no propellers
- no large solar panels to power the motors
- no batteries needed to power propulsion at nighttime
- maybe no parachute (?)
- maybe no balonet and associated mechanisms (?)

A Comparison of High Altitude Platforms for Science Applications

ltem	Airship	Tethered Balloon
Altitude Range	< 75 kft	65 kft +
Payload mass	~ 40 kg (Hale-D, HiSentinel80)	> 100 kg ?
StationKeeping	only if winds < 10 m/s	its tethered
Cost	\$35M for HALE-D	unknown, probably less
Duration	days to weeks?	days to weeks ?

A hybrid tether idea is the "StarLight" high altitude platform under development by Global Near Space Systems Inc (GNSS). It consists of a slightly aerodynamic balloon which is attached to a solar powered propulsion unit hung below.

Starlight with narrow-wing, high-speed configuration...

and with wide-chord, lightgathering configuration

This arrangement solves several problems associated with the multiballoon tethered to the ground approach.

- No winch needed
- No aviation hazard issues associated with a grounded tether line
- Avoids most issues regarding stormy weather
- Tether wind loading is modest since tether altitudes > 65 kft
- Simpler deployment process with fewer elements

Separating the propulsion unit & PV panels from the balloon:

- propulsion propellers located in denser air and in lower winds
- propulsion unit could act like an "anchor" to the balloon
- PV panels competely unblocked by the balloon

I've run some calculations and in the next slides I show the results.

Figure 15 Mean Winds for Cape Kennedy, FL, Throughout the Year [21]

MEAN ZONAL WINDS - 40dN

65,000 ft: Best Aerodynamic Shapes Drag Force @ 5 km/s 10 km/s 20 m/s $C_{D} = 0.05$ 66 kft 54 millibars D = 7 m2 N 9 N 33 N 0.086 kg/m^3 L = 30 mDisp: 100 kg $C_D = 0.35$ Mission 56 millibars 65 kft D = 1.0 m0.8 N 3 N 9N payload $0.091 kg/m^3$ L = 1.0 m3 kft (1 km) $C_{D} = 0.5$ 1.4 mm tether 1 N 3 N 13 N L = 1 km1.1 kg wt MBS = 200 kg $C_D = 0.05$ 0.05 N 0.2 N 0.8 N 64 kft 59 millibars D = 0.5 mPropulsion 0.095 kg/m^3 L = 2.5 mvehicle

90,000 ft: Spherical Balloon

90,000 ft: Aerodynamic Balloon

90,000 ft: Best Aerodynamic Shapes

Airship

The top balloon might have a size like HiSentinel80 but without the propulsion motor, parachute, and heavy battery packs.

HISentinel80: 60 m long, 15 m wide Payload mass 40 kg Solid mass = 500 kg Helium mass = 100 kg Drop Ballast ~ 20 kg