Mechanical vs. Inflatable Deployable Structures for Large Apertures or Still No Simple Answers

Presented to the Keck Institute for Space Sciences

Large Space Apertures Workshop

November 10-11, 2008

Mark W. Thomson

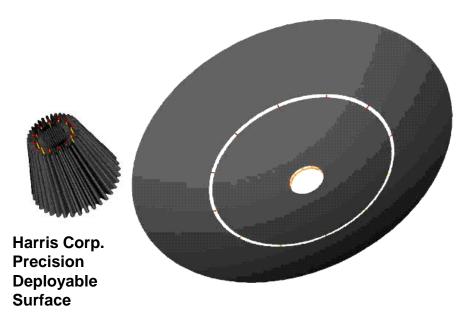
Principal Supervisor

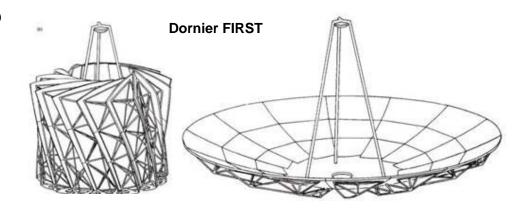
Advanced Deployable Structures Group and Laboratory

Mechanical Systems Division 35

Instrument Engineering Section

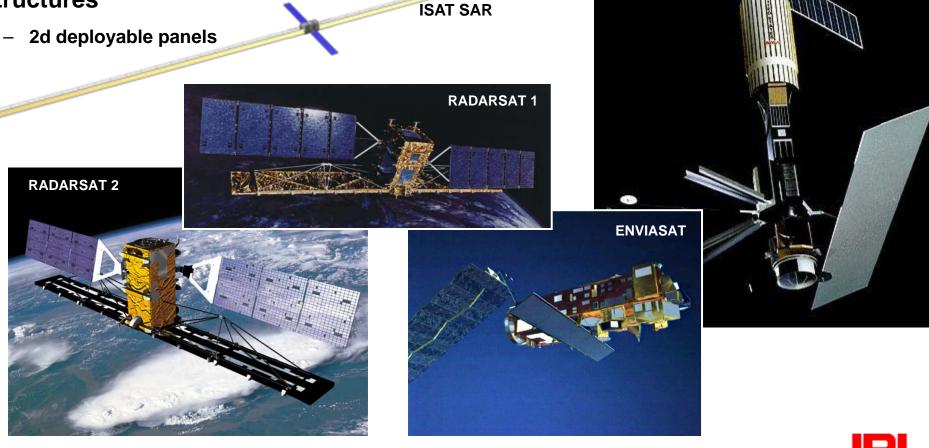
Aperture Range Addressed


- Radio Frequency (RF) Apertures
 - Less than 100 GHz (λ > 3.3 mm)
- Large
 - At lest one deployed aperture dimension is larger than the largest available launch vehicle fairing
 - 5+ m diameter



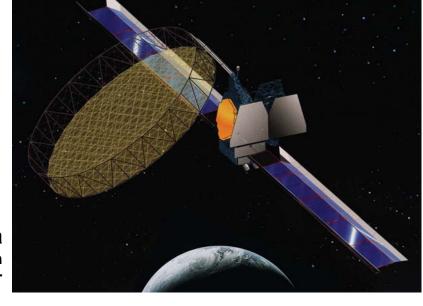
Aperture Types Not Addressed

- Semi-rigid petals/panels deployed into a contiguous curved surface
- Spring-back
- Phase transition, "Shape Memory" or "Rigidizable" material systems and related structural concepts
- Hybrids

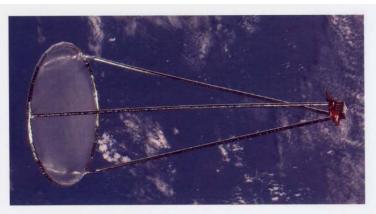


More Aperture Types Not Addressed

- Azimuth scanning array structures
 - 1d deployable, i.e. one aperture dimension << launch vehicle I.D.
- Azimuth & elevation scanning array structures

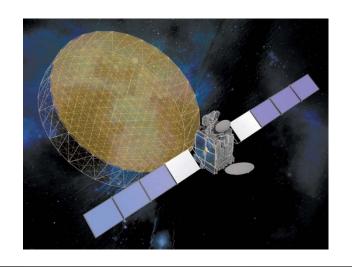


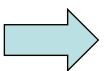
SEASAT

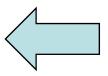

Aperture Types Addressed

- Doubly-curved parabolic reflectors
 - Non-rigid, tensioned reflector surfaces
 - Passive control of structural precision

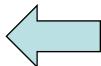
Thuraya AstroMesh Reflector

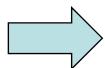



IAE
Inflatable Antenna
experiment



Mechanical vs. Inflatable Reflectors?





Production Automobile

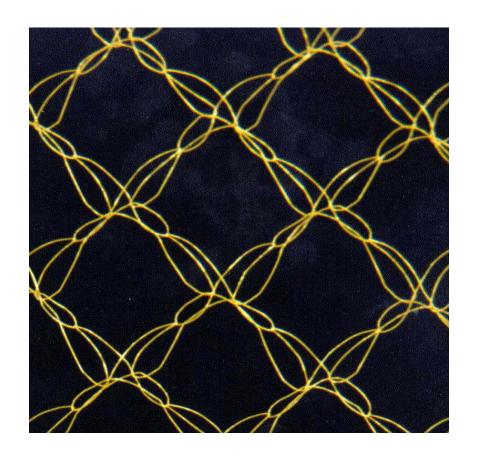
Personal Aircraft

Outline

- Deployable aperture state of the art (SOTA)
- SOTA performance limits
- Future Directions for any large deployable RF aperture
 - Higher performance
 - Larger reflectors
 - Larger arrays

Deployable Aperture State of the Art

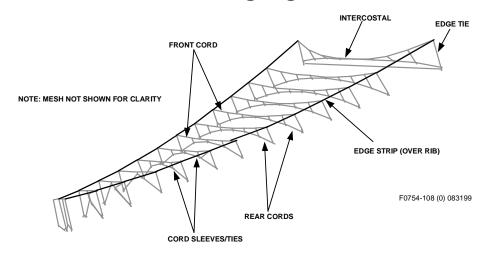
- SOTA has flown or selected for an operational Mission
 - Device is typically < 5% of Mission cost
 - Deployable fails = Science, Commercial or other Mission failure
- Mesh reflector apertures are the SOTA
 - Many doubly curved parabolic mesh reflectors
 - Harris Corp. and NGST Astro Aerospace are regularly competed

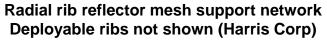

Mesh Reflector State of the Art

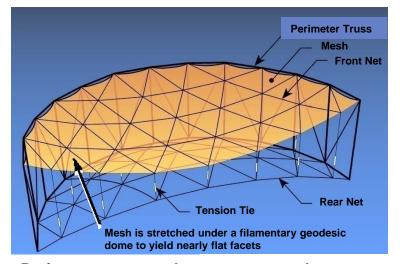
What is Mesh?

- Gold plated molybdenum wire
 - Approximately 0.030mm (0.001") Ø
- Tricot warp knit fabric
 - Highly elastic behavior
 - Non-linear, anisotropic stiffness
- Limited to RF frequencies below 100 GHz
- Performance is unaffected by, thermal, radiation, micrometeorite, UV & atomic oxygen environments

Mesh Reflector Principles


- A stiff and stable deployable structural framework stretches highly elastic mesh into an approximation of the required RF surface
- Low mesh stiffness allows structurally redundant coupling with the composite support structure to remain a second-order effect
 - Mesh-imparted loads are relatively low
 - Thermal stability of the reflector is unaffected by the presence of mesh





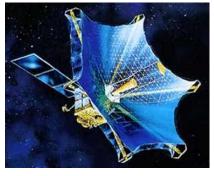
Mesh Reflector Characteristics

- Deployable structural framework
 - Lightweight composite members; high stiffness and thermal stability
 - Members linked kinematically for mechanical stowage and deployment
- Filamentary mesh support structure
 - Assembly of highly stable linear elements such as cords and tapes
 - Approximation of the required surface achieved with tie points and/or lines
 - Periodicity and geometry of mesh support structure defines systematic errors
 - Manufacturing & global thermal stability of framework is controlled

Perimeter truss mesh support network (NGST Astro Aerospace)

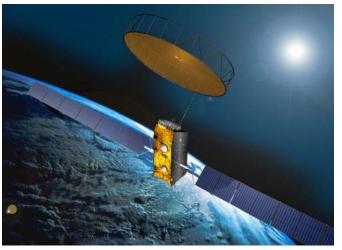
Mesh Reflector Characteristics

- Additional mesh surface errors are inherent to how it is shaped
 - "Pillowing" & "reverse lampshade" effects
 - Faceting errors
 - "Bow-back" from mesh loads on tensioned cords
 - Structural redundancy in the mesh support structure (and between it and the deployable framework) lead to variations in tension. This results in further mesh deformation during thermal extremes
 - The presence of hardware causes local surface errors



Mesh Reflector Flight History

- A minimum total of 51 NASA, Commercial & Navy units have or will be flown by 2011
 - 35 reflectors to 13m
 flown to-date
 - At least 16 more units with apertures to 22m by 2011



35 Mesh Reflectors On-Orbit

NASA, Commercial and Navy Satellites

Name	Aperture (m)	Qty.	Date	Vendor	Comments
ATS-6	9.1	1	5/74	Lockheed	Wrap-rib; axisymmetric
FLTSATCOM	5	6	1978-89	TRW	Radial Rib with 80" solid center; axisymmetric
TDRS A,C,D,E,F,G	4.9	12	4/83 - 7/95	Harris	Curved Radial Rib; axisymmetric
Galileo	4.9	1	10/89	Harris	Curved Radial Rib; axisymmetric
HALCA	8	1	2/97	ISAS	Extendible Rib (AstroMasts); axisymmetric
Garuda	12	2	2/00	Harris	Folding Rib; Offset edge-mounted design
Thuraya 1-3	12.25	4	10/00 - 2/08	NGST	AstroMesh Perimeter Truss; Offset edge- mounted design
N-STAR c	5.1	1	7/02	Harris	Straight Radial Rib; Offset edge-mounted design
MBSat	12	1	3/04	NGST	AstroMesh Perimeter Truss; Offset edge- mounted design
INMARSAT	9	2	3/05 & 10/05	NGST	AstroMesh Perimeter Truss; Offset edge- mounted design
JCSat-9	5.1	1	4/06	Harris	Straight Rib; Offset edge-mounted design
JAXA ETS-8	13	2	12/06	Toshiba	Mesh Modules; Offset edge-mounted design; Test Satellite
ICO	12	1	4/08	Harris	Folding Rib; Offset edge-mounted design

16 Mesh Reflectors Pending Launch

Commercial and Navy Com Satellites in design & fabrication

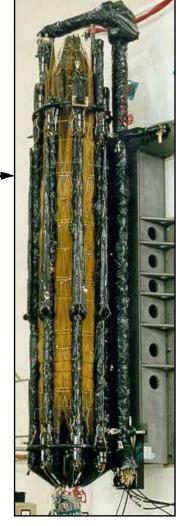
Name	Aperture (m)	Qty.	Vendor	Comments
MUOS (Navy)	6	3	Harris	Straight Rib
XM Radio	9	2	Harris	Straight Rib
SIRIUS	9	1	Harris	Straight Rib
ALPHA-SAT	11	1	NGST Astro	Perimeter Truss
CMB-Star	12	1	Harris	Folding rib
W2A	12	1	Harris	Folding rib
MUOS (Navy)	14	3	Harris	Folding Rib
Terrestar	18	2	Harris	Folding rib:
MSV	22	2	Harris	Harris Hoop (perimeter truss)

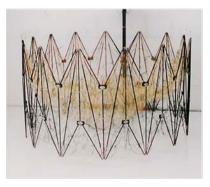
16 reflectors to 22m will be flown by 2011

Harris Corp. Examples

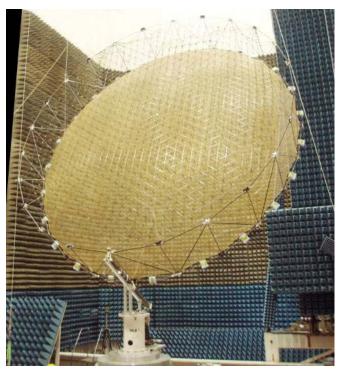
12m ACeS Folding Rib

Deployed


Stowed


ACeS Folding Rib in RF Test

NGST Astro Examples

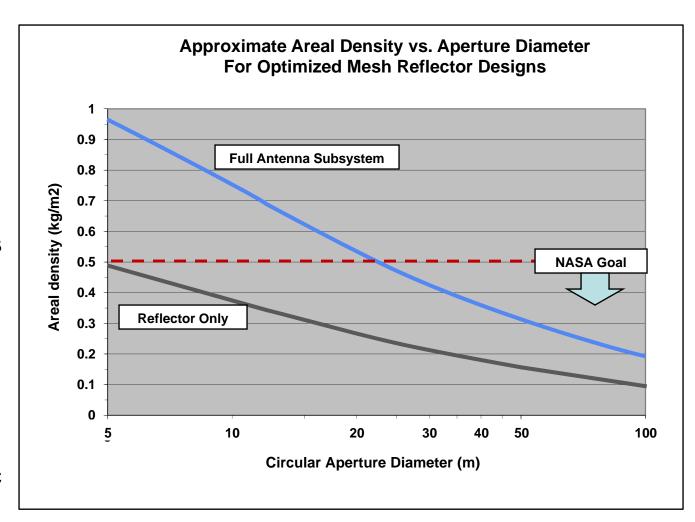


12m AstroMesh

- AM-Lite RF testing at NASA GRC
- Pre & PostDeploymentMeasurements
- 50 GHz performance matches that of a perfect 4m reflector

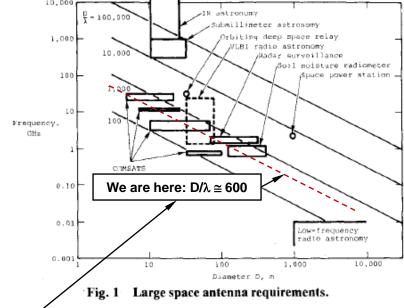
12m AM-1 6 to 25-Meter Class

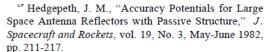
> **12m AM-2** 18 to 50-Meter


Limits of Design & Performance

Mesh Reflector Areal Density

- A full antenna subsystem includes:
 - Reflector
 - Boom
 - Launch restraints
 - Harnesses
 - Etc.
- Reflector-only mass may be approx ½ total subsystem
- We must be specific

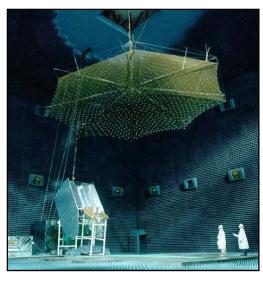




Mesh Reflector Frequency Potential

- Surface figure approximation capability: D/W_{RMS} = 30,000
 - D = circular aperture diameter
 - W_{RMS} = RSS sum of all RMS errors:
 - Systematic
 - Manufacturing
 - Orbital thermal
 - Deployment repeatability
 - Material effects: radiation, creep, dry-out, load/thermal hysteresis, property scatter (CTE, modulus), life
 - Pillowing/bow-back
- 30 GHz (Ka band) with λ /50 with a 6m aperture
- Mesh reflection loss
 - Mesh can be knitted densely enough for very low loss through Ka band
 - Low aperture efficiency systems (VLBI for instance) to under 100 GHz

Other Performance Factors


- Lifetime required for most heritage mesh reflectors:
 - 15 years at GEO
 - 50 deployment cycle life (not verified)
- Effective orbital drag area and solar transmissivity
 - Approximately 20 to 25% of the total frontal projected area
 - Helps S/C fuel consumption to remain low
- Stowage volume and form factor for launch
 - Difficult to generalize
 - Current launch vehicles may limit SOTA mesh apertures to about 100 meters maximum
- Launch loads
 - 10g to 30g quasi-static

Ground Testing and Verification

- "Test-as-you-fly" criteria are often waived
 - Marsis & Sharad FFT antennas by NGST displayed uncontrolled synchronous deployments
 - End-to-end RF performance & thermal distortion
- Attempts to fly a deployable main mission antenna without 100% demonstration of deployment in the minimum relevant environment will be met with significant resistance
 - For mesh reflectors: room temperature and pressure in 1-g with appropriate offloading
 - Over 10 deployments may be required to complete an initial qualification campaign
 - Controlled synchronous or sequential deployments
- Flight experiments will not defray ground test requirements significantly for operational Missions

ACeS Folding Rib in RF Test

12 m AstroMesh supported on 3-points retains shape

Advancing the Large Aperture State of the Art

- Any new technology must meet or exceed key requirements satisfied by mesh reflector state of the art to supplant it
- Future Directions
 - Larger reflectors? Max capability of mesh has not been required
 - Higher frequency capacity with lower loss mesh is leaky
 - Active structural shape control
 - Larger azimuth scanning arrays (1d)
 - ISAT
 - Azimuth and Elevation scanning arrays (2d)
 - No one know how to do this yet (well)
 - Singly curved parabolic deployable reflectors
 - Materials:
 - 0 CTE membranes with tailorable Poisson's ratio
 - High and/or low stiffness membranes
 - Electroactive phase-change materials

