Capturing Non-Cooperative Objects

Brian Wilcox 27 Sep 2011

Capturing Non-Cooperative Objects

- •Literature
- •Spin State
- Modeling
- •Grappling
- •De-spinning
- Attachment for thrusting

Non-Cooperative Grappling Literature

- Many have addressed capture of non-cooperative objects in the context of orbital debris removal.
- "Catcher's Mitt" study by DARPA (2010):
 - "Large object removal generally employs advanced rendezvous and proximity (RPO) operations and sophisticated grappling techniques (other methods of capturing large objects were also proposed: net, inflatable longeron, tethered harpoon, articulated tether/lasso, and electrostatic/adhesive blanket). The significant challenge of grappling a large debris object is further complicated if the object is tumbling..."
 - "However, the following positive attributes of articulated arm mechanisms were identified:
 - Multi-link robotic arms are the most common and mature means to grapple for servicing satellites or ISS modules, and for docking and assembly; and
 - Viable approaches exist for grappling cooperative and non-cooperative (including tumbling) debris in close proximity."
- European Study (Cranfield Space Research Centre, 2010): "Grappling and docking mechanism: challenging task for un-cooperative object of unknown condition (fragile?) and state (tumbling?). Autonomy is assumed (but not yet proven)"

Tumbling, or just Spinning?

- "Tumbling Asteroids" by Alan W. Harris (JPL, at the time), Icarus, 1993 (http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/32558/1/94-0304.pdf) says time constant of damping of rotation to align with principal axis is inverse with angular velocity cubed and radius squared. NEA Toutatis (r~2km), a slow-rotator (~7.5 day) is estimated to have damping time constant ~1.5x10¹² years.
- Under these assumptions, a ~1 m asteroid could have a spin period as slow as 10 minutes and still have a damping time constant as long as the age of the solar system. Small objects have collisional lifetimes much less than the age of the solar system.

Spin Periods of Near-Earth Asteroids

- Many small NEAs are spinning too fast to be Rubble Piles; no regolith?
- For few-m radius, we need to plan for spin periods of as low as minutes.
- Expect tumbling.
- Figure from "The Rotation Rate Distribution of Small Near-Earth Asteroids" by Desireé Costo Figueroa, Master's Thesis, Ohio University, Nov. 2008.

Figure 1.4: The Rotation Rate Distribution for Solar System Bodies. Upper and lower scale indicate approximate diameters. The vertical scale on the right indicates the period in hours. The blue crosses are data from NEAs and the dashed black crosses are data from main-belt asteroids and some main-belt comets. The blue dashed line indicates the rubble pile limit. Modified from Pravec and Harris (2007b).

Grappling a Spinning Object

- Telerobot Testbed demonstration of grappling a free-spinning gimbaled satellite (1987).
- Demonstrates key ingredients of tracking, synchronized motion, and attachment with compliant grasp.

Physics of Stopping a Spinning NEA

- Using SEP to stop

 a spinning NEA is
 simple if it can be
 grappled
 effectively.
- A 30 kW SEP system can stop a NEA w/ 2-m radius & 10minute spin period in 1 revolution.

Earth's gravity	9.81 m/s2	
Gravitational contant	6.67E-11 MKS u	units
Solar flux at 1 AU	1350 W/m2	2
density of asteroid	2500 kg/m	3
spin period	0.16666667 hours	;
radius	2 m	
mass	8.38E+04 kg	
moment of inertia	134041.287 MKS u	units
angular velocity	0.01047198 radia	ns/s
angular momentum	1403.67707 kg*m	/s
SEP propulsion		
Power	16,500 W	
Isp	3000 secon	nds
mass flow rate	3.8101E-05 kg/s	
thrust	1.12130479 N	
torque	2.24260958 Nm	
time to thrust	625.912366 secon	nds
total propellant mass	0.02384772 kg	

Modeling

- Custom or commercial stereo vision or laser scanning systems can create precise 3-D model of complex objects:
 - -Custom stereo (e.g. MER stereo vision system)
 - –Commercial "cloud" multi-image processors (e.g. Microsoft, CAD vendors)
 - -LIDAR processing algorithms (custom or commercial)
- Illumination and albedo modeling to compare observed image with prediction at given illumination and viewing angles.

Forces on a Small Body Lander

"Measuring Physical Properties at the Surface of a Comet Nucleus" Andrew J Ball, Ph.D thesis 1997, University of Kent, Canterbury, UK.

Force	Direction(s)	Magnitude
Weight of the lander (gravitational force)	Towards centre of mass of nucleus	$F_{\rm grav} = M \cdot \frac{4}{3} \pi R_c \rho_c G$
Centrifugal force	Outwards from nucleus rotation axis	$F_{\rm cent} = M \cdot \frac{4\pi^2 R_{\rm c} \cos\delta}{P^2}$
Drag from evolved gas	Mostly radial away from nucleus, possibly some tangential component (wind)	$F_{\rm drag} = 4 R^2 C_D a e^{-\frac{b}{T}}$
Impact of dust particles	Complex (mostly radial) flux, partially coupled to gas flow	F_{dust} = momentum transferred per unit time; related to gas flow
Solar radiation	Anti-solar direction (day only)	$F_{\rm rad} = \frac{\pi R^2}{c} \cdot \frac{1371 [\rm Wm^{-2}]}{(d [\rm AU])^2}$
Passage of seismic waves	Many	$F_{seis} = \frac{4\pi^2 M z_0}{\tau^2}$
Electrostatic	Normal to nucleus surface (repulsive)	$F_{\rm el} = \pi R^2 \cdot \frac{e n_e \Phi_z}{2}$
Reaction from moving	Many (upwards for devices	$F_{\rm reac}$ = mass of moving part \times
parts (e.g. drill &	lowered to surface or drilling	velocity / acceleration time
deployable experiments)	into it)	
Anchor cable tension	Downwards	F_{anc} , determined by harpoon rewind motor

Forces on a Small Body Lander – cont.

- Anchoring force should
 overcome other
 forces acting on
 lander
- •Anchoring force needed: 75 kg lander -10N anchor force 750 kg lander -100N anchor force

"Measuring Physical Properties at the Surface of a Comet Nucleus" Andrew J Ball, Ph.D thesis 1997, University of Kent, Canterbury, UK.

Definitions of cohesion and friction angle

• $\tau = c + tan (\phi_f)$, where ϕ_f , is known as the friction angle (or internal-angle-of-friction), and the zero normal-stress intercept, c, is known as the cohesion (or cohesive strength) of the soil. Sample values for lunar soil are shown.

Cohesion is ~40 Pa at loosely packed conditions and increases to 10 kPa at 100% relative density. Friction angle also increases monotonically from 25 deg to ~60 deg.
Rosetta Lander design takes advantage of this effect of greatly increased cohesion by local compression of the cometary regolith under the landing pods during landing.

Reference: Bulk Powder Physical Properties (Cohesion, Cohesivity, Flowability) from "Adhesion of Lunar Dust" by Walton in NASA/ CR-2007-214685

Inflatable Anchor

Fig. 1. Inflatable anchor.

"Non-linear analysis of pullout tests on inflatable anchors in sand" by Y. Yang, S. D. Hinchberger, and T.A. Newson, Geotechnical Research Centre, Dept of Civil Eng, The University of Western Ontario, London, Ontario, Canada N6A 5B9.

Circumferential Rope Tether

- The ropes have to be reeled out around body before landing on the asteroid
- Feasible for very small bodies (<10km)

Ian Garrick-Bethell, Christopher E. Carr "Working and walking on small asteroids with circumferential ropes" Acta Astronautica 61 (2007) 1130-1135.

Helical Anchor

Harpoon Anchor

- Possibly Simple & light-weight
- An instrumented harpoon probes the media during its passage
- Deceleration curves can be inverted to yield mechanical properties
- Cohesion can be calculated

During penetration the flaps are closed; following penetration, tensioning of the cable by the rewind motor causes a partial opening of the flaps, depending on the strength of the material. From "Impact penetrometry..", Komle et al. www.elsevier.nl/locate/planspasci

Augering into Regolith

 Counter-rotating helical augers have no net torque reaction. Separation between flutes reduces friction without reducing pull-out force compared to continuous flute.

Conclusions

- Small NEAs may be fast-spinners of solid rock (no regolith) or slower spinning with regolith,
- Spin of NEAs is easily zeroed with ~1N force for ~10 minutes, if one can "grab hold",
- Anchoring to nickel-iron would be done with magnet; anchoring to rock would be with rotarypercussive "bootstrapping" drill requiring axial force of ~10N for ~1 minute to start pilot hole; anchoring in regolith might be with counterrotating augers,
- Nets or lassos deserve further study.