National Aeronautics and Space Administration

NASA

Keck Workshop: Asteroid Retrieval Mission Potential Targets

Dan Mazanek, Senior Space Systems Engineer Langley Research Center – Systems Analysis and Concepts Directorate

April 7, 2014

Candidate Asteroids for Mission Design

- Each asteroid's return date is fixed & dictated by natural close approach times
- Lower V_{∞} allows return of larger objects
- Assuming mid-2019 nominal launch

Asteroid	Asteroid Mass Est.	Asteroid V-infinity	Earth Return Date	Crew Accessible	Notes	
2009 BD*	30-145 t (returnable)	1.2 km/s	Jun 2023	Mar 2024 or earlier	Valid mission candidate, rotation period > 2 hrs, Spitzer-based upper bound on mass	
2011 MD*	TBD (max 620 t)**	1.0 km/s	Jul 2024	Aug 2025	Spitzer obs. successful final characterization results pending Rotation period 0.2 hrs	
2014 BA3	TBD (max 500 t)**	1.8 km/s	Jan 2024	Early 2025	Discovered Jan 2014, not detected by Radar Optical characterization pending	
2013 EC20	4-43 t (returnable)	2.6 km/s	Sept 2024	Late 2025	Discovered March 2013, Radar characterized rotation period ~ 2 min 2024 return requires DIV H or FH launch 2020 return possible with Feb 2018 launch	
2008 HU4	TBD (max 700 t)**	0.5 km/s	Apr 2026	Mid 2027	Close Earth flyby in April 2016	

* High-fidelity trajectory analysis performed for 2009 BD and 2011 MD

** Max returnable mass using a Delta IV Heavy or Falcon Heavy

2009 BD: Max Return Mass vs. Launch Date

2011 MD: Max Return Mass vs. Launch Date

Launch Date

Target Availability and Boulder Size and Mass

- One Valid Candidate with hundreds of candidate boulders: Itokawa
- Two candidates may be characterized by precursors in 2018: Bennu (OSIRIS-REx) & 1999 JU₃ (Hayabusa 2)
- One candidate characterized by radar at ~6000 SNR: 2008 EV₅*
- At least two more candidates may be sufficiently characterized by radar during the next 4 years: 2011 UW₁₅₈, 2009 DL₄₆

Boulder Size and Mass for June 2019 Launch and February - May 2025 Crew Availability

Spherical maximum returnable boulder size ranges from 1.5 m to 4 m enabling a large range of boulder size for retrieval.

* Personal communication Michael Bush (ref. Busch et al., Icarus Volume 212, Issue 2, April 2011, Pages 649–660)

Candidate Target Boulder Return Sizes

Launch no earlier than June 2019 Crew Availability in stable LDRO in February - May of: 2024 2025 2026 2027 Itokawa **1**m ~3.22 g/cm³ Size (m) 1.3, 1.4, 1.6 2.2, 2.3, 2.8 0.8 2.2, 2.3, 3.0 Bennu Delta IV ~1.62 g/cm³ Heavy Falcon Size (m) 1.7, 2.0, 2.0 2.3, 2.4, 3.0 3.0, 3.2, 3.6 3.0, 3.0, 3.5 Heavy 1999 JU₃ ~1.62 g/cm3 SLS Size (m) 0.6, 1, 1.3 2.4, 2.5, 2.8 3.3, 3.3, 3.5 3.5, 3.8, 3.9 2008 EV₅ Note: Atlas V 551 ~1.62 g/cm³ performance not assessed. Size (m) 2.0, 2.3, 2.4 3.3, 3.4, 3.8 3.6, 3.6, 3.8 3.8, 3.9, 4.1

Robotic Boulder Capture Option has a set of candidates that are robust to changes in return dates.

Masses and additional data for June 2020 and June 2021 launches in backup

Boulder Aspect Ratio

- Spherical boulder sizes in this presentation assume represent the <u>smallest</u> maximum extent for a given mass and density. For example:
- A 10 t carbonaceous boulder with density of 1.62 g/cm^3 has a 2.3 m spherical extent.
- This mass and density would have a maximum extent of ~3.3 m for 3:3:1 aspect ratio.

Assumes carbonaceous material with density = 1.62 g/cm^3

Configuration and operations are robust to a wide range of NEA sizes, masses, and rotation rates beyond Itokawa.

	Itokawa	Bennu	1999 JU ₃	2008 EV ₅
Mass	3.15 x 10 ¹¹ kg	7.79 x 10 ¹⁰ kg	1.55 x 10 ¹² kg	1.05 x 10 ¹¹ kg
Dimensions	535 x 294 x 309 m	Mean Dia.: 492 m	Eff. Dia.: 870 m	420 x 410 x 390 m
Rotation Period	12.132 hours	4.297 hours	7.627 hours	3.725 hours
50 m Sun Angle	45 degrees	60 degrees	37.5 degrees	60 degrees
Contact Sun Angle	30 degrees	15 degrees	15 degrees	15 degrees
Dry-Run 1 Dur.	5.25 days	5.13 days	5.25 days	5.13 days
Dry-Run 2 Dur.	5.28 days	5.26 days	5.28 days	5.26 days
20 m Descent Dur.	12.73 min	11.37 min	4.51 min	7.96 min
Contact Velocity from 20 m	5.237 cm/s	5.861 cm/s	14.788 cm/s	8.371 cm/s

Returnable Boulder Size Trends

Missions with duration >5 years can launch any year and return a ~2+ meter boulder from Itokawa or Bennu providing mission robustness to schedule changes.

Similar performance expected for:

2

1

2018

→<5 yr TOF

🛨 6-7 yr TOF

1999 JU₃ synodic period ~4.3

2008 EV₅ synodic period ~15.7

Bennu Synodic Period ~6 yrs

Itokawa's Boulder Rich Surface

- Hayabusa mission confirmed the presence of many boulders on Itokawa's surface.
- Data from images suggest that several thousand 2 to 5 m boulders exist on Itokawa.
- ~20% of the entire asteroid's surface contains smooth areas (flat terrain with few hazards and wide access) – hundreds of boulder targets
- Boulders are believed to be generated by impacts and appear to be common on NEAs.

Hayabusa Touchdown Site Approach

- Smooth areas have boulders sitting on a surface dominated by gravels and pebbles. Stereo image analysis indicates a high probability that some boulders are not embedded.
- Highest resolution of the images during the Hayabusa touchdown are 6 to 8 mm/pixel.
- Evidence from Hayabusa and ground-based radar suggests that boulders may be relatively common on near-Earth asteroids (e.g., Bennu and 2005 YU55).
- This evidence is supported by theoretical and laboratory analysis of asteroid rubble pile formation and impact processes.

