DACOTA

Geoffrey C Bower, Dave DeBoer, Garrett Keating, Matt Fleming, Dick Plambeck UC Berkeley

DACOTA

- <u>D</u>ense
- <u>Array for</u>
- <u>CO</u>smology and
- <u>Transient</u>
- <u>A</u>strophysics

Our Logo

DACOTA

- •Transients
- •CO at redshift of EOR
- •SZ Effect
- •Galactic Water and Ammonia
- •Other...

- Dense array of 4 x 64 x 2m antennas
- 10 40 GHz (2 feed horns)
- T_{svs} ~ 25 50 K
- 10 GHz Bandwidth, 8k channels
- Spatial FFT Correlator
- Resolution: 1' 22'
- Survey speed ~ EVLA speed
- 2 years to complete 100 deg² CO survey

Key Science

- Detect redshifted molecular gas from the epoch of reionization through integrated emission (intensity mapping)
- Is this the optimal means to understand the molecular gas?
- Is CO the best tracer?
- What else do we learn about galaxy evolution via this technique?

Driving Specifications

- ~1 microK in power spectrum on scales of ~10 arcmin
- Line widths ~300 1000 km/s
- Ultimately, need to survey volume large enough to address cosmic variance
- Two transitions of CO necessary to eliminate line confusion

Inteferometry vs. Single Dish

	Interferometry	Single Dish
Gain stability	 	
K-mode targeting	 ✓ 	
Calibration flexibility	✓	
Cryogenic complexity		
Digital complexity	?	 ✓
Other science applications	?	?

Bracketing Strawmen

- 1.8m x 19 x N • 1.0m x 133 x n
- Cost drivers: receivers & correlators

Simplify Cryogenics

System

Receiver

Direct Imaging Correlator

- N log(N) processing of N² baselines
- Real-time results
- Far fewer data products

But there's no going back ...

Conclusions on Calibration

- Calibration very feasible (phew)
- Additional calibrators feasible with additional collecting area
- Algorithm development will be required
- Modeling of calibrator fields will likely be required, should be considered early science/engineering goal

DACOTA Workshop

- 3 4 August 2011, Berkeley
- Participants
 - Adam Lidz
 - Tzu-Ching Chang
 - Aaron Parsons
 - Chris Carilli
 - Lincoln Greenhill
 - Yuh-Jing Hwang
 - Matt Fleming
 - Carl Heiles
 - Dick Plambeck
 - Dave DeBoer
 - Mel Wright
 - Geoff Bower
 - Garrett Keating
 - Bill Holzapfel
 - Alberto Bolatto (Telecon)
 - Steve Furlanetto (T)
 - John Carlstrom (T)
 - Dan Marrone (T)
 - Steve Myers (T)

- Outcomes
 - Central theoretical question of CO luminosity in low-mass galaxies:
 - What is the optimal redshift to probe?
 - Should we probe CII instead?
 - ALMA/EVLA measurements unlikely to inform on this question.
 - Cross-correlation of CO J=1-0 and J=2-1 is powerful discriminant
 - Cross-correlation of CO & HI is potentially powerful...
 - but may be difficult to match resolutions, sky coverage, etc
 - Foregrounds are manageable (but require more thought)
 - Take a phased approach to deployment
 - Phase 1: Optimize DACOTA for power spectrum detection on large angular scales (must learn to think in k-space!)
 - Phase 2: Imaging, larger angular scales

Additional Science

- SZ effect
 - DACOTA angular scales probably too large
- Transients
 - OGRBAs, TDFs, GW counterparts
- Galactic gas
 - Spinning dust
- Zeeman effect
 - CCS is potential target
- ...
- Can an instrument optimized for the key project be powerful for other topics?

Technology Spin Offs/Synergies

- FFT correlator development
 - Real time calibration & imaging
 - More suitable for this than low-frequency telescopes
- Large-N cm receiver development
 - Exploit efforts for ALMA band 1
- EVLA collecting area expansion concept

 Use of phased array signals
- Potential CARMA collaboration

Next Steps

- Design Optimization for Phase 1
 - Dish diameter (D/2 for $\lambda/2$)
 - Horns or dishes?
 - Number of elements & configuration: linear or grid?
 - Third axis for parallactic angle correction
 - Optimal redshift range