The Cosmological Recombination Spectrum: So What?

CITA Canadian Institute for Theoretical Astrophysics L'institut canadien d'astrophysique theorique

Workshop on "The First Billion Years"

August 17, 2010, Pasadena

Collaborators: R.A. Sunyaev (MPA) and J.A. Rubiño-Martín (IAC)

Cosmological Time in Years

- Dependence on normal cosmological parameters
 - \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$

Hydrogen recombination spectrum: dependence on $\Omega_b h^2$

- Dependence on normal cosmological parameters
 - \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$
 - \rightarrow number of helium atoms determines number of He photons \Leftrightarrow Y_p
 - → changing Y_p also changes number of HI photon and the mixture of HeI spectrum and HI spectrum

- Dependence on normal cosmological parameters
 - \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$
 - \rightarrow number of helium atoms determines number of He photons $\Leftrightarrow Y_p$
 - → changing Y_p also changes number of HI photon and the mixture of HeI spectrum and HI spectrum
 - \rightarrow changing T₀ shifts the positions of spectral features ('real' thermometer)

Hydrogen recombination spectrum: dependence on T_0

- Dependence on normal cosmological parameters
 - \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$
 - \rightarrow number of helium atoms determines number of He photons \Leftrightarrow Y_p
 - → changing Y_p also changes number of HI photon and the mixture of HeI spectrum and HI spectrum
 - \rightarrow changing T₀ shifts the positions of spectral features ('real' thermometer)
 - → real shifts expected to be small, but the question is how easy it will be to measure the position of the line-template?

- Dependence on normal cosmological parameters
 - \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$
 - \rightarrow number of helium atoms determines number of He photons \Leftrightarrow Y_p
 - → changing Y_p also changes number of HI photon and the mixture of HeI spectrum and HI spectrum
 - \rightarrow changing T₀ shifts the positions of spectral features ('real' thermometer)
 - → real shifts expected to be small, but the question is how easy it will be to measure the position of the line-template?
 - \rightarrow direct dependence on H₀ or $\Omega_m h^2$, etc rather small...

Hydrogen recombination spectrum: dependence on h

Figure 7.3: The 1 and 2 dimensional marginalized parameter posterior using the CMB spectral distortions. All three cases constrain the CMB power spectrum using a Gaussian likelihood based on Planck noise levels. The black line adds constraints due to a 10% measurement of the spectral distortions, while the blue line assumes a 1% measurement. The red line does not include the data from the spectral distortions. CMB based cosmology alone

 Spectrum helps to break some of the parameter degeneracies

 Planning to provide a module that computes the recombination spectrum in a fast way

 detailed forecasts: which lines to measure; how important is the absolute amplitude; how accurately one should measure; best frequency resolution;

How does the signal actually look?

- Dependence on normal cosmological parameters
 - \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$
 - \rightarrow number of helium atoms determines number of He photons \Leftrightarrow Y_p
 - → changing Y_p also changes number of HI photon and the mixture of HeI spectrum and HI spectrum
 - \rightarrow changing T₀ shifts the positions of spectral features ('real' thermometer)
 - → real shifts expected to be small, but the question is how easy it will be to measure the position of the line-template?
 - \rightarrow direct dependence on H₀ or $\Omega_m h^2$, etc rather small...
- Dependence on recombination dynamics and physics

100-shell hydrogen atom and continuum Non-equilibrium effects on the bound-bound-spectrum

Rubiño-Martín, JC & Sunyaev, 2006, astro-ph/0607373 JC, Rubiño-Martín & Sunyaev, 2006, astro-ph/0608242

100-shell hydrogen atom and continuum Effect of I-changing collisions on the b-b spectrum

JC, Rubiño-Martín & Sunyaev, 2006, astro-ph/0608242

- collisions start to be important
 for *n* above ~ 40
- at low frequencies solution for n_{split}=2 lies above those with n_{split}=100
- difference in the low frequency slope robust (0.35 ↔ 0.46)
- large $n \rightarrow$ transitions with Δn ~ *n* favoured for n_{split} =100

The importance of HI continuum absorption

Changes in the Lyman α escape probability

 Changes in Ly α escape probability *directly* translate into changes of the CMB Ly α distortion

• $\Delta P/P = 10\% \Rightarrow \Delta I_v/I_v = 10\%$

 Since Ly α line controls dynamics of recombination also all other lines will be affected by this process

- Dependence on normal cosmological parameters
 - \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$
 - \rightarrow number of helium atoms determines number of He photons \Leftrightarrow Y_p
 - → changing Y_p also changes number of HI photon and the mixture of HeI spectrum and HI spectrum
 - \rightarrow changing T₀ shifts the positions of spectral features ('real' thermometer)
 - → real shifts expected to be small, but the question is how easy it will be to measure the position of the line-template?
 - \rightarrow direct dependence on H₀ or $\Omega_m h^2$, etc rather small...
- Dependence on recombination dynamics and physics
 - \rightarrow allows us to check the recombination model
 - → critical question: how well one will have to do to even if the 'response' is more direct?

Is the Cosmological Recombination Spectrum Really Interesting Enough?

- Dependence on normal cosmological parameters
 - \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$
 - \rightarrow number of helium atoms determines number of He photons \Leftrightarrow Y_p
 - → changing Y_p also changes number of HI photon and the mixture of HeI spectrum and HI spectrum
 - \rightarrow changing T₀ shifts the positions of spectral features ('real' thermometer)
 - → real shifts expected to be small, but the question is how easy it will be to measure the position of the line-template?
 - \rightarrow direct dependence on H₀ or $\Omega_m h^2$, etc rather small...
- Dependence on recombination dynamics and physics
 - \rightarrow allows us to check the recombination model
 - \rightarrow critical question: how well one will have to do to even if the 'response' is more direct?
- Effects of intrinsic y-distortions

Another Example: Energy Release in the Early Universe

Full thermodynamic equilibrium (certainly valid at very high redshifts)

- CMB has a blackbody spectrum at every time (not affected by expansion!!!)
- Photon number density and energy density determined by temperature T_{γ}

Disturbance of full equilibrium for example by

- Energy injection (e.g. decaying or annihilating particles or phase transitions)
- Production of (energetic) photons and/or particles

CMB spectrum would deviate from a pure blackbody today!

- "Early" energy release ($z \ge 50000$) $\Rightarrow \mu$ -type distortion (another talk...)
- "Late" energy release (z ≤ 50000)
 ⇒ y-type distortion

Cobe/Firas spectral measurements (Mather et al., 1996; Fixsen et al. 1996; Fixsen et al. 2002)

 $\rightarrow |y| \le 1.5 \ge 10^{-5}$

Energy injection ⇒ CMB Spectral Distortions

How easy is it actually to learn something interesting about the thermal history?

- CMB distortion can be predicted for different energy injection histories and mechanisms (e.g. Hu & Silk, 1993a&b; Burigana & Salvaterra, 2003)
 - → Spectral distortions are *broad* and *featureless*
 - → Absolute (COBE-type) measurements are required
- Different injection histories yield very similar spectral distortion!
 Simplest example: pre- and post-recombinational y-type distortions
 - energy release at redshifts 1000 < z < 50000
 - SZ-effect e.g. due to unresolved clusters, supernova remnants, shockwaves, etc.

 \Rightarrow *y*-distortion

Energy injection ⇒ CMB Spectral Distortions

How easy is it actually to learn something interesting about the thermal history?

- CMB distortion can be predicted for different energy injection histories and mechanisms (e.g. Hu & Silk, 1993a&b; Burigana & Salvaterra, 2003)
 - → Spectral distortions are *broad* and *featureless*
 - → Absolute (COBE-type) measurements are required
- Different injection histories yield very similar spectral distortion!
 Simplest example: pre- and post-recombinational y-type distortions
 - energy release at redshifts 1000 < z < 50000
 - SZ-effect e.g. due to unresolved clusters, supernova remnants, shockwaves, etc.

 \Rightarrow y-distortion

Absence of *narrow spectral features* makes it very hard to understand real details!!!

Pre-recombinational atomic transitions after possible early energy release

pure blackbody CMB

no net emission or absorption of photons before recombination epoch!

non-blackbody CMB

(Lyubarsky & Sunyaev, 1983)

- → atoms "try" to restore full equilibrium
- → atomic loops develop (cont.→ bound → cont.)
- \rightarrow "splitting" of photons
- → loops mainly end in Lyman-continuum
- → Balmer-cont. loops work just before recombination

JC & Sunyaev, 2008, astro-ph/0803.3584

JC & Sunyaev, 2008, astro-ph/0803.3584

Hydrogen Helium + negative feature negative feature 10^{-26 |} $y = 10^{-1}$ ······ v = 10⁻⁶ $v = 10^{-1}$ 10^{-26} 10 sr⁻¹] S $\Delta I_{\rm v} ~[{\rm J}~{\rm m}^{-2}~{\rm s}^{-1}~{\rm Hz}^{-1}$ 10⁻²⁷ [J m⁻² s⁻¹ Hz 10⁻²⁸ $\Delta I_{\mathbf{v}}$ 10⁻²⁸ + 10⁻²⁹ HeII bb+fb-spectra HI bb+fb-spectra $n_{\rm max} = 25$ $n_{\rm max} = 25$ $z_{\rm in} = 40000$ $z_{\rm in} = 40000$ 10^{-29} 10^{-30} 1000 3000 1000 10 3000 10 100 100 v[GHz] ν[GHz]

JC & Sunyaev, 2008, astro-ph/0803.3584

JC & Sunyaev, 2008, astro-ph/0803.3584

- Large increase in the total amplitude of the distortions with value of y!
- Strong emission-absorption feature in the Wien-part of CMB (absent for y=0!!!)

 Hell contribution to the pre-recombinational emission as strong as the one from Hydrogen alone !

JC & Sunyaev, 2008, astro-ph/0803.3584

- Large increase in the total amplitude of the distortions with injection redshift!
- Number of spectral features depends on injection redshift!
- Emission-Absorption feature increases ~2 for energy injection $z \Rightarrow 11000$

CMB spectral distortions after single energy release Changes in the low-frequency variability

increase of the peakpeak amplitude by up to a factor of 2!
non-trivial phaseshifts

additional features

JC & Sunyaev, 2008, astro-ph/0803.3584

CMB spectral distortions after single energy release Comparison with intrinsic y-distortion

Distortion exceeds intrinsic y-distortion at very low and very high frequencies!

Atomic loops may even help restoring blackbody there!

Question about collisions....

JC & Sunyaev, 2008, astro-ph/0803.3584

- Dependence on normal cosmological parameters
 - \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$

 \rightarrow number of helium atoms determines number of He photons \Leftrightarrow Y_p

- → changing Y_p also changes number of HI photon and the mixture of HeI spectrum and HI spectrum
- \rightarrow changing T₀ shifts the positions of spectral features ('real' thermometer)
- → real shifts expected to be small, but the question is how easy it will be to measure the position of the line-template?
- \rightarrow direct dependence on H₀ or $\Omega_m h^2$, etc rather small...
- Dependence on recombination dynamics and physics
 - \rightarrow allows us to check the recombination model
 - \rightarrow critical question: how well one will have to do to even if the 'response' is more direct?
- Effects of intrinsic y-distortions
 - \rightarrow lines are 'thermometer' at different redshift
 - \rightarrow could allow us to 'date' the y-type distortion
 - \rightarrow additional source of low frequency photons that could help erasing distortions

Dependence on normal cosmological parameters

- \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$
- \rightarrow number of helium atoms determines number of He photons $\Leftrightarrow Y_p$
- \rightarrow changing Y_p also changes number of HI photon and the mixture of HeI spectrum and HI spectrum
- \rightarrow changing T₀ shifts the positions of spectral features ('real' thermometer)
- → real shifts expected to be small, but the *question* is how easy it will be to measure the position of the line-template?
- \rightarrow direct dependence on H₀ or $\Omega_m h^2$, etc rather small...

Dependence on recombination dynamics and physics

- \rightarrow allows us to check the recombination model
- → *critical question*: how well one will have to do to even if the 'response' is more direct?

Effects of intrinsic y-distortions

- \rightarrow lines are 'thermometer' at different redshift
- → could help us to 'date' y-type distortions; *Question*: is this problem really much harder otherwise?
- ightarrow additional source of low frequency photons that could help erasing distortions

Dark matter annihilation or decaying particles during recombination

Dependence on normal cosmological parameters

- \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$
- \rightarrow number of helium atoms determines number of He photons $\Leftrightarrow Y_p$
- \rightarrow changing Y_p also changes number of HI photon and the mixture of HeI spectrum and HI spectrum
- \rightarrow changing T₀ shifts the positions of spectral features ('real' thermometer)
- → real shifts expected to be small, but the *question* is how easy it will be to measure the position of the line-template?
- \rightarrow direct dependence on H₀ or $\Omega_m h^2$, etc rather small...

Dependence on recombination dynamics and physics

- \rightarrow allows us to check the recombination model
- → *critical question*: how well one will have to do to even if the 'response' is more direct?

Effects of intrinsic y-distortions

- \rightarrow lines are 'thermometer' at different redshift
- → could help us to 'date' y-type distortions; *Question*: is this problem really much harder otherwise?
- ightarrow additional source of low frequency photons that could help erasing distortions

Dark matter annihilation or decaying particles during recombination

Extra Sources of Ionizations or Excitations

• ,Hypothetical' source of extra photons parametrized by $\epsilon_{\alpha} \& \epsilon_{i}$

- Extra excitations \Rightarrow delay of Recombination
- Extra ionizations ⇒ affect 'freeze out' tail
- This affects the Thomson visibility function

• From WMAP $\Rightarrow \epsilon_{\alpha} < 0.39 \& \epsilon_i < 0.058$ at 95% confidence level (Galli et al. 2008)

 Extra ionizations & excitations should also lead to additional photons in the recombination radiation!!!

 This in principle should allow us to check for such exotic sources of photons at z~1000

Peebles, Seager & Hu, ApJ, 2000

Example: Dark Matter Annihilations (I)

Efficiencies according to Chen & Kamionkowski, 2004 & Shull & van Steenberg 1985

- N^2 dependence $\Rightarrow dE/dt \propto (1+z)^6$ and $dE/dz \propto (1+z)^{3...3.5}$
- continuous energy release ⇒ tiny µ & y-type distortion
- only part of the energy is really deposited ($f_d \sim 0.1$)
- Branching into heating (100% at high z), ionizations and excitations (mainly during recombination)
- Branching depends on considered DM model

Example: Dark Matter Annihilations (II)

- 'Delay of recombination'
- Affects Thomson visibility function
- Possibility of Sommerfeld-enhancement
- Additional photons at all frequencies
- Broadening of spectral features
- Shifts in the positions

Example: Dark Matter Annihilations (III)

• WMAP constraints on possible dark matter annihilation efficiencies already very tight (e.g. see Galli et al. 2009; Slatyer et al. 2009)

- absolute changes to CMB power spectra have to be small (~ 1%-5%)
- changes to cosmological recombination spectrum are of similar order

 So why bother anymore? What could the cosmological recombination spectrum teach us in addition?
 (JC, 2009, arXiv:0910.3663)

- spectrum is sensitive to cases for which the C_l's are not affected!
- DM annihilation parameters are ,degenerate' with $n_{\rm S}$ & $\Omega_{\rm b}h^2$
- spectrum could help breaking this degeneracy

very direct way to check for sources of extra ionizations and excitations during all three recombination epochs

Dependence on normal cosmological parameters

- \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$
- \rightarrow number of helium atoms determines number of He photons $\Leftrightarrow Y_p$
- \rightarrow changing Y_p also changes number of HI photon and the mixture of HeI spectrum and HI spectrum
- \rightarrow changing T₀ shifts the positions of spectral features ('real' thermometer)
- → real shifts expected to be small, but the *question* is how easy it will be to measure the position of the line-template?
- \rightarrow direct dependence on H₀ or $\Omega_m h^2$, etc rather small...

Dependence on recombination dynamics and physics

- ightarrow allows us to check the recombination model
- → *critical question*: how well one will have to do to even if the 'response' is more direct?

Effects of intrinsic y-distortions

- \rightarrow lines are 'thermometer' at different redshift
- → could help us to 'date' y-type distortions; *Question*: is this problem really much harder otherwise?
- ightarrow additional source of low frequency photons that could help erasing distortions

Dark matter annihilation or decaying particles during recombination

→ it is easy to perturb baryon, and the lines directly respond to tiny amounts of energy injection during recombination
 → spectrum sensitive even at times when the CMB anisotropies will not be affected at all!

Dependence on normal cosmological parameters

- \rightarrow number of hydrogen atoms determines number of H photons $\Leftrightarrow \Omega_b h^2$
- \rightarrow number of helium atoms determines number of He photons $\Leftrightarrow Y_p$
- \rightarrow changing Y_p also changes number of HI photon and the mixture of HeI spectrum and HI spectrum
- \rightarrow changing T₀ shifts the positions of spectral features ('real' thermometer)
- → real shifts expected to be small, but the *question* is how easy it will be to measure the position of the line-template?
- \rightarrow direct dependence on H₀ or $\Omega_m h^2$, etc rather small...

Dependence on recombination dynamics and physics

- ightarrow allows us to check the recombination model
- → *critical question*: how well one will have to do to even if the 'response' is more direct?

Effects of intrinsic y-distortions

- \rightarrow lines are 'thermometer' at different redshift
- → could help us to 'date' y-type distortions; *Question*: is this problem really much harder otherwise?
- ightarrow additional source of low frequency photons that could help erasing distortions

Dark matter annihilation or decaying particles during recombination

 \rightarrow it is easy to perturb baryon, and the lines directly respond to tiny amounts of energy injection during recombination \rightarrow spectrum sensitive even at times when the CMB anisotropies will not be affected at all!

• Other stuff, which one still has to work out...

- \rightarrow variation of fundamental constants during recombination (α , m_e , m_e/m_p ; position of features!)
- → non-standard BBN; Inhomogeneous Helium production (small scales; average spectrum different; width of the lines)

Cosmological Time in Years

Effects due to electron scattering

Line broadening due to the Doppler-term

