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Lessons from constraining the global 21 cm signal
in the presence of foregrounds

2

generation telescopes such as JWST
4
, GMT

5
, EELT

6
or

TMT
7

may provide a glimpse of the Universe at z � 12

they peer through a narrow field of view and are unlikely

to touch upon redshifts z � 20. As we will show, 21

cm global experiments could potentially provide crude

constraints on even higher redshifts at a much lower cost.

The structure of this paper is as follows. In §II, we

begin by describing the basic physics that drives the evo-

lution of the 21 cm global signature and drawing atten-

tion to the key observable features. We follow this in §III
with a discussion of the foregrounds, which leads into our

presenting a Fisher matrix formalism for predicting ob-

servational constraints in §IV. In §V and §VI we apply

this formalism to the signal from reionization and the

first stars, respectively. After a brief discussion in §VII

of the prospects for detecting the signal from the dark

ages before star formation, we conclude in §VIII.

Throughout this paper where cosmological parameters

are required we use the standard set of values Ωm = 0.3,

ΩΛ = 0.7, Ωb = 0.046, H = 100h km s
−1

Mpc
−1

(with

h = 0.7), nS = 0.95, and σ8 = 0.8, consistent with the

latest measurements [15].

II. PHYSICS OF THE 21 CM GLOBAL SIGNAL

The physics of the cosmological 21 cm signal has been

described in detail by a number of authors [16, 17] and

we focus here on those features relevant for the global

signal. It is important before we start to emphasise our

uncertainty in the sources of radiation in the early Uni-

verse, so that we must of necessity extrapolate far beyond

what we know to make predictions for what we may find.

Nonetheless the basic atomic physics is well understood

and a plausible understanding of the likely history is pos-

sible.

The 21 cm line frequency ν21 cm = 1420 MHz redshifts

for z = 6 − 27 into the range 200-50 MHz. The signal

strength may be expressed as a differential brightness

temperature relative to the CMB

Tb = 27xH

�
TS − Tγ

TS

� �
1 + z

10

�1/2

× (1 + δb)(1 + δx)

�
∂rvr

(1 + z)H(z)

�−1

mK, (1)

where xH is the mean hydrogen neutral fraction, δx is

the fractional variation in the neutral fraction, δb is the

overdensity in baryons, TS is the 21 cm spin temperature,

Tγ is the CMB temperature, H(z) is the Hubble param-

eter, and the last term describes the effect of peculiar

4 http://www.jwst.nasa.gov/
5 http://www.gmto.org/
6 http://www.eso.org/sci/facilities/eelt/
7 http://www.tmt.org/

velocities with ∂rvr the derivative of the velocities along

the line of sight. Throughout this paper, we will neglect

fluctuations in the signal so that neither of the terms δb,

δx, nor the peculiar velocities will be important. Spatial

variation in δx and δb will be relevant for the details of

the signal, but are not required to get the broad features

of the signal, on which we focus here.

FIG. 1: Evolution of the 21 cm global signal for different
scenarios. Solid blue curve: no stars; solid red curve: TS �
Tγ and xH = 1; black dotted curve: no heating; black dashed
curve: no ionization; black solid curve: full calculation.

The evolution of Tb is thus driven by the evolution of

xH and TS and is illustrated for redshifts z < 100 in

Figure 1. Early on, collisions drive TS to the gas temper-

ature TK , which after thermal decoupling (at z ≈ 1000)

has been cooling faster than the CMB leading to a 21 cm

absorption feature ([TS − Tγ ] < 0). Collisions start to

become ineffective at redshifts z ∼ 80 and scattering of

CMB photons begins to drive TS → Tγ causing the sig-

nal to disappear. In the absence of star formation, this

would be the whole story [18].

Star formation leads to the production of Lyα photons,

which resonantly scatter off hydrogen coupling TS to TK

via the Wouthysen-Field effect [19, 20]. This produces

a sharp absorption feature beginning at z ∼ 30. If star

formation also generates X-rays they will heat the gas,

first causing a decrease in Tb as the gas temperature is

heated towards Tγ and then leading to an emission sig-

nal, as the gas is heated to temperatures TK > Tγ . For

TS � Tγ all dependence on the spin temperature drops

out of equation (1) and the signal becomes saturated.

This represents a hard upper limit on the signal. Should

there be no heating then the signal will stay in absorp-

tion and reach several hundred mK in amplitude as the

gas continues to cool adiabatically. Finally reionization
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Overview

• 21 cm global signal - physics
• Foregrounds and experiments
• Reionization
• First galaxies

Assume perfect calibration. What 
information survives foreground removal?

Pritchard & Loeb 2010
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Known unknowns...

We know nothing concrete 
about the thermal history 

of the Universe 
between z=1100 and z=6

We know little or nothing
about galaxies 

at z>10
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Discovery space

We know nothing concrete 
about the thermal history 

of the Universe 
between z=1100 and z=6

We know little or nothing
about galaxies 

at z>10
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black body anisotropies
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21cm
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FIG. 8: residuals at 0.5mK
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21 cm basics

11S1/2

10S1/2
n0

n1

λ = 21 cm

n1/n0 = 3 exp(−hν21cm/kTs)

ν21cm = 1, 420, 405, 751.768± 0.001 Hz

Useful numbers:

100 MHz→ z = 13

200 MHz→ z = 6

70 MHz→ z ≈ 20

Hyperfine transition of neutral hydrogen

Spin temperature describes relative occupation of levels

Precisely measured transition from water masers

tAge(z = 10) ≈ 500 Myr

tAge(z = 6) ≈ 1 Gyr

tAge(z = 20) ≈ 150 Myr

tGal(z = 8) ≈ 100 Myr
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Spin temperature
• After z~200 CMB and gas out of thermal equilibrium 
=> two temperature scales

• 21 cm spin temperature interpolates between the 
two depending on the strength of coupling

n=2

n=1

Lyman α scattering

H-H/H-e 
Collisions

CMB
absorption

2

Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.046, H = 100h km s
−1

Mpc
−1

(with h = 0.7), nS = 0.95, and σ8 = 0.8,

consistent with the latest measurements [? ].

II. PHYSICS OF THE 21 CM GLOBAL SIGNAL

The physics of the cosmological 21 cm signal has been described in detail by a number of authors

[3, 4] and we focus here on those features relevant for the global signal. It is important before we

start to emphasis our uncertainty in the sources of radiation in the early Universe, so that we must

of necessity extrapolate far beyond what we know to make predictions for what we may find. None

the less the basic atomic physics is well understood and a plausible understanding of the likely

history is possible.

The 21 cm line occurs at ν21 cm = 1420MHz, which for redshifts in the range z = 6−27 redshifts

into the range 200-50 MHz. The signal strength may be expressed as a differential brightness

temperature given by

Tb = 27xHI(1 + δb)

�
TS − Tγ

TS

� �
1 + z

10

�1/2 �
∂rvr

(1 + z)H(z)

�−1

mK, (1)

where xHI is the hydrogen neutral fraction, δb is the overdensity in baryons, TS is the 21 cm

spin temperature, Tγ is the CMB temperature, H(z) is the Hubble parameter, and the last term

describes the effect of peculiar velocities with ∂rvr the derivative of the velocities along the line

of sight. Throughout this paper, we will neglect fluctuations in the signal so that neither of the

terms δb nor the peculiar velocities will be relevant. Fluctuations in xH and δb will be relevant for

the details of the signal, but are not required to get a broad sense of the signal, as which we aim

for here.

The evolution of Tb is thus driven by the evolution of xH and TS and is illustrated for redshifts

z < 50 in Figure 1. Early on, collisions drive TS to the gas temperature TK , which after thermal

decoupling has been cooling faster than the CMB leading to a 21 cm absorption feature (TS−Tγ <

0). Collisions start to become ineffective at redshifts z ∼ 80 and scattering of CMB photons begins

to drive TS → Tγ causing the signal to disappear. In the absence of star formation, this would be

the whole of the story (shown in Figure 1 as the black dashed curve).

Star formation leads to the production of Lyα photons, which resonantly scatter off hydrogen

coupling TS to the gas temperature TK via the Wouthysen-Field effect. This produces a sharp

absorption feature beginning at z ∼ 30. If star formation also generates X-rays, these will heat the

gas first causing a decrease in Tb as the gas temperature is heated towards Tγ and then lead to an

21cm brightness
temperature
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21 cm global signal

Constraining massive neutrinos using cosmological 21 cm observations

Jonathan R. Pritchard∗

Harvard-Smithsonian Center for Astrophysics,

MS-51, 60 Garden St, Cambridge, MA 02138

abstract

I. INTRODUCTION

FIG. 1: default

∗
Hubble Fellow; Electronic address: jpritchard@cfa.harvard.edu

TCMB

TK

TS

collisional Lya coupling

adiabatic
cooling

X-ray heating

Main processes:
1) Collisional coupling
2) Lya coupling
3) X-ray heating
4) Photo-ionization

Furlanetto 2006
Pritchard & Loeb 2010



Jonathan PritchardKISS 2010

Alternative scenarios

Maybe there was no
X-ray heating?

Maybe Lya photons don’t
escape their host halos?

Maybe shocks heat the IGM
long before X-ray sources 

exist?

11

FIG. 8: residuals at 0.5mK

Observations could answer
any of these questions
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Exotic physics

Exotic energy injection before
first stars switch on

Possibilities:
DM annihiliation

DM decay
Excited DM relaxation

Evaporating primodial BH
Cosmic string wakes

...

Furlanetto+ 2006
Valdes+ 2007
Mack+ 2008

Very sensitive
 thermometer
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Shape of the signal

• 21 cm signal driven by coupling and heating

• Disentangling different physics requires shape details

• Much easier to pick out key features
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Foregrounds

5

FIG. 3: Foregrounds

10 mK signal. Nonetheless, given the smooth frequency dependence of the foregrounds we are

motivated to try fitting the foreground out using a low order polynomial in the hope that this

leaves the signal behind. This has been shown by many authors to be a reasonable proceedure [?

].

FIG. 4: Residuals left over after fitting a n-th order polynomial in log ν to the foreground from the GSM.

Throughout this paper, we will fit the foregrounds using a polynomial of the form

log Tfit =

Npoly�

i=0

ai log(ν/ν0)
i. (2)

Here ν0 is a pivot scale and we will generally recast a0 → log T0 to emphasise that the zeroth order

coefficient has units of temperature. The lower panel of Figure 4 shows the residuals left over after

Modelling the sky for a global 21 cm experiment

Jonathan R. Pritchard
∗

Harvard-Smithsonian Center for Astrophysics,

MS-51, 60 Garden St, Cambridge, MA 02138

abstract

I. GALAXY SKY MODEL

We have a model for the galaxy. A plot of the galactic foreground at 100 MHz is shown in Figure

1. The foregrounds cover a dynamic range of three orders of magnitude. Note that this model is

only accurate at the level of tens of Kelvin.

FIG. 1: default

We imagine a single dipole antennae being used to observe the sky. As the earth rotates the

observation vector sketches out a closed path in galactic coordinates. Averaging over the path of a

day the dipole’s sensitivity on the sky is shown in Figure 2

Finally, we show the predicted foreground for our hypothetical experiment in Figure 3.

∗
Hubble Fellow; Electronic address: jpritchard@cfa.harvard.edu

Response of ideal dipole
at MWA site averaged over a day

Sky at 100 MHz dominated by 
galactic foregrounds

de Oliveira-Costa+ 2008

Few independent pixels on the sky
but possibly can exploit
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Foregrounds vs Signal

2

FIG. 1: Comparison of foregrounds and signal

FIG. 2: Figure with residuals after fitting foregrounds. Illustrates that although overall fit of sky temperature

is good, errors in fitting the foreground propagate into errors in the fitted 21 cm signal larger than the thermal

noise. Solid and dashed curves show fits for different realisations of the noise. 3rd order polynomial.

Foregrounds smooth
Signal has structure
Separation possible...

Dynamic range >105 
needed

I. SCIENCE IMPLEMENTATION: SENSITIVITY PREDICTIONS

A. Signal modelling

Predicting the sensitivitity of a global 21 cm experiment may be split into two parts: 1) cal-

culating the raw sensitivity of the experiment to the sky temperature at the desired frequency 2)

calculating the ability of the experiment to extract useful cosmological parameters from observa-

tions. The first is governed in a straightforward manner by the radiometer equation, so that the

noise in a given frequency channel is given by

∆T =
Tsky√
∆νtobs

(1)

where Tsky is the sky temperature, ∆ν is the width of a frequency channel, and tobs is the integration

time.

The more interesting question is how to get useful information about cosmology since information

is lost during the foreground removal process.

Perhaps the key to this is deciding what parametric description of the signal to use. Foreground

removal typically leaves behind a set of residuals that are meaningless to the naked eye, but encode

information about the signal in a deterministic way. The fewer parameters needed to describe the

signal the better these parameters may be constrained, but if the parameteric form is not a good

fit to the true signal then erroneous conclusions may be drawn. This becomes especially important

when, as in our case, the foregrounds are many orders of magnitude larger than the signal.

We chose to utilise a parametric form based upon the positions of the turning points of the

signal, each characterised by a frequency and a brightness temperature. With this information

alone the basic features may be reproduced although some shape information is lost. Others are

possible and a variety of techniques should be explored once more data is available.

B. foreground fitting

How well can we remove the foregrounds? What can we learn about the signal when we’re done?

What is the optimal way to separate foregrounds from signal in a noiseless measurement.

The importance of the forgeround fitting is illustrated in Figure 4. Here a third order polynomial

for the foregrounds is being fit to a simulated sky alongside the six parameters needed to describe
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Foreground fitting

5

FIG. 3: Foregrounds

10 mK signal. Nonetheless, given the smooth frequency dependence of the foregrounds we are

motivated to try fitting the foreground out using a low order polynomial in the hope that this

leaves the signal behind. This has been shown by many authors to be a reasonable proceedure [?

].

FIG. 4: Residuals left over after fitting a n-th order polynomial in log ν to the foreground from the GSM.

Throughout this paper, we will fit the foregrounds using a polynomial of the form

log Tfit =

Npoly�

i=0

ai log(ν/ν0)
i. (2)

Here ν0 is a pivot scale and we will generally recast a0 → log T0 to emphasise that the zeroth order

coefficient has units of temperature. The lower panel of Figure 4 shows the residuals left over after

6

fitting and subtracting polynomials of order 1–3 to the foregrounds. It is readily apparent that

a polynomial of at least Npoly is necessary to remove the foreground. Unfortunately, the current

level of knowledge of the sky is not sufficient for us to conclusively say that we will not need a

higher order polynomial or to accurately quantify the minimum level of residuals that will be left

on fitting the signal.

FIG. 5: Best fit values for the first six parameters from the foreground fitting process

Figure 5 shows the evolution of the best fit values as we change the order of the fit. Clearly

the first four values are non-zero and therefore important to the fit. The next two hover around

zero (although as the order increases they move away from zero). This suggests that only the first

four parameters are necessary and after that we’re beginning to overfit. We therefore take as our

fiducial model for the foreground the form

log Tsky = log T0 + a1 log(ν/ν0) + a2[log(ν/ν0)]
2
+ a3[log(ν/ν0)]

3, (3)

with parameter values ν0 = 150MHz, T0 = 159K, a1 = −2.54, a2 = −0.0736, a3 = 0.0127, chosen

from fitting to the band ν = 100 − 200 MHz. Where necessary we include additional terms as

ai = 0 for i ≥ 4. Fitting to a different bandwidth and pivot frequency will modify these values.

For example, fitting to ν = 50 − 150 MHz with ν0 = 100 MHz yields, T0 = 438K, a1 = −2.47,

a2 = −0.0890, a3 = 0.0126. With the exception of the overall normalisation there is no qualitative

change in the shape.
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frequency, especially if the bandwidth of the instrument

is small. Throwing the signal out with the foregrounds

is therefore a definite concern.

FIG. 4: Foreground (top panel) and residuals (bottom panel)
left over after fitting a N-th order polynomial in log ν to the
foreground.

Throughout this paper, we will fit the foregrounds us-

ing a polynomial of the form

log Tfit =

Npoly�

i=0

ai log(ν/ν0)
i. (2)

Here ν0 is a pivot scale and we will generally recast

a0 → log T0 to emphasise that the zeroth order coeffi-

cient more naturally has units of temperature. The lower

panel of Figure 4 shows the residuals left over after fit-

ting and subtracting polynomials of different order to the

foregrounds. It is apparent that a polynomial of at least

Npoly = 3 is necessary to remove the foreground. Unfor-

tunately, our current knowledge of the low frequency sky

is not sufficient for us to conclusively say that we will not

need a higher order polynomial or to accurately quantify

the minimum level of residuals that will be left on fitting

the signal. The residuals visible in Figure 4 for Npoly = 3

are dominated by numerical limitations of the sky model

being used and have
�
�(Tsky − Tfit)

2� � 1 mK averaged

over the band.

Figure 5 shows the evolution of the best fit values as

we change the order of the fit. The first four values are

non-zero and therefore important to the fit. The next

two hover around zero (although as the order increases

they move away from zero). This supports the inference

that only the first four parameters are necessary and after

that we are beginning to over fit. We therefore take as

FIG. 5: Dependence of the best fit values for the first six
parameters from the foreground fitting process on the order
of the polynomial, Npoly.

our fiducial model for the foreground the form

log Tsky = log T0

+ a1 log(ν/ν0) + a2[log(ν/ν0)]
2

+ a3[log(ν/ν0)]
3, (3)

with parameter values ν0 = 150 MHz, T0 = 320 K, a1 =

−2.54, a2 = −0.074, a3 = 0.013, chosen from fitting to

the band ν = 100 − 200 MHz. These values are roughly

consistent with those found by the observations reported

in Ref. [28], which found T0 = 237±10 K and a1 = −2.5±
0.1 over the same band. Where necessary we include

additional terms as ai = 0 for i ≥ 4. Fitting to a different

bandwidth and pivot frequency will modify these values.

For example, fitting to ν = 50 − 150 MHz with ν0 =

100 MHz yields, T0 = 875 K, a1 = −2.47, a2 = −0.089,

a3 = 0.013. Aside from the overall normalisation, there

is little qualitative change in the shape.

IV. FISHER CALCULATION

The main objective of this paper is to develop a for-

malism for quantifying the ability of global 21 cm experi-

ments to constrain astrophysical parameters. A straight-

forward, but brute force approach, is to model the signal,

add a foreground, and then use Monte-Carlo (MC) fitting

techniques to see how well model parameters may be con-

strained. When faced with the large space of model pa-

rameters to be explored this is inadequate. We therefore

explore the use of the Fisher matrix approach, applicable

if the model likelihood is well approximated by a multi-

variate Gaussian. We will later show that this is a good
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that we are beginning to over fit. We therefore take as

FIG. 5: Dependence of the best fit values for the first six
parameters from the foreground fitting process on the order
of the polynomial, Npoly.

our fiducial model for the foreground the form

log Tsky = log T0

+ a1 log(ν/ν0) + a2[log(ν/ν0)]
2

+ a3[log(ν/ν0)]
3, (3)

with parameter values ν0 = 150 MHz, T0 = 320 K, a1 =

−2.54, a2 = −0.074, a3 = 0.013, chosen from fitting to

the band ν = 100 − 200 MHz. These values are roughly

consistent with those found by the observations reported

in Ref. [28], which found T0 = 237±10 K and a1 = −2.5±
0.1 over the same band. Where necessary we include

additional terms as ai = 0 for i ≥ 4. Fitting to a different

bandwidth and pivot frequency will modify these values.

For example, fitting to ν = 50 − 150 MHz with ν0 =

100 MHz yields, T0 = 875 K, a1 = −2.47, a2 = −0.089,

a3 = 0.013. Aside from the overall normalisation, there

is little qualitative change in the shape.

IV. FISHER CALCULATION

The main objective of this paper is to develop a for-

malism for quantifying the ability of global 21 cm experi-

ments to constrain astrophysical parameters. A straight-

forward, but brute force approach, is to model the signal,

add a foreground, and then use Monte-Carlo (MC) fitting

techniques to see how well model parameters may be con-

strained. When faced with the large space of model pa-

rameters to be explored this is inadequate. We therefore

explore the use of the Fisher matrix approach, applicable

if the model likelihood is well approximated by a multi-

variate Gaussian. We will later show that this is a good
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II. PHYSICS OF THE 21 CM GLOBAL SIGNAL

The physics of the cosmological 21 cm signal has been

described in detail by a number of authors [9, 10] and

we focus here on those features relevant for the global

signal. It is important before we start to emphasis our

uncertainty in the sources of radiation in the early Uni-

verse, so that we must of necessity extrapolate far beyond

what we know to make predictions for what we may find.

None the less the basic atomic physics is well understood

and a plausible understanding of the likely history is pos-

sible.

The 21 cm line occurs at ν21 cm = 1420MHz, which for

redshifts in the range z = 6− 27 redshifts into the range

200-50 MHz. The signal strength may be expressed as a

differential brightness temperature given by

Tb = 27xHI(1+δb)

�
TS − Tγ

TS

� �
1 + z

10

�1/2 �
∂rvr

(1 + z)H(z)

�−1

mK,

(1)

where xHI is the hydrogen neutral fraction, δb is the over-

density in baryons, TS is the 21 cm spin temperature, Tγ

is the CMB temperature, H(z) is the Hubble parameter,

and the last term describes the effect of peculiar veloc-

ities with ∂rvr the derivative of the velocities along the

line of sight. Throughout this paper, we will neglect fluc-

tuations in the signal so that neither of the terms δb nor

the peculiar velocities will be relevant. Fluctuations in

xH and δb will be relevant for the details of the signal,

but are not required to get a broad sense of the signal,

as which we aim for here.

FIG. 1: Purely pedagogic plot. Dotted curve: fully saturated;
dashed curve: no star formation; red curve: saturated with
reionization; blue dashed curve: no reionization; blue dotted
curve: no heating or reionization; blue solid curve: full signal

The evolution of Tb is thus driven by the evolution

of xH and TS and is illustrated for redshifts z < 50 in

Figure 1. Early on, collisions drive TS to the gas tem-

perature TK , which after thermal decoupling has been

cooling faster than the CMB leading to a 21 cm absorp-

tion feature (TS − Tγ < 0). Collisions start to become

ineffective at redshifts z ∼ 80 and scattering of CMB

photons begins to drive TS → Tγ causing the signal to

disappear. In the absence of star formation, this would

be the whole of the story (shown in Figure 1 as the black

dashed curve).

Star formation leads to the production of Lyα photons,

which resonantly scatter off hydrogen coupling TS to the

gas temperature TK via the Wouthysen-Field effect. This

produces a sharp absorption feature beginning at z ∼ 30.

If star formation also generates X-rays, these will heat

the gas first causing a decrease in Tb as the gas temper-

ature is heated towards Tγ and then lead to an emission

signal, as the gas is heated to temperatures TK > Tγ .

For TS � Tγ all dependence on the spin temperature

drops out of equation (1) and the signal becomes satu-

rated. This represents a hard upper limit on the signal.

However, reionization will occur at some point as UV

photons ionize bubbles that percolate ionizing hydrogen

and removing the 21 cm signal.

We may thus identify four main events in the history

of the 21 cm signal: (1) collisional coupling becoming

ineffective (2) Lyα coupling becoming effective (3) heat-

ing occuring (4) reionization beginning (5) reionization

ending. In the scenario described above the first four of

these events generates a turning point (dTb/dz = 0) and

the final event marks the end of the signal. We reiterate

that the astrophysics of the sources driving these events

is very uncertain. Figure 2 shows histories for different

values of the X-ray and Lyα emissivity, parametrized by

fX and fα following [10]. Clearly the positions of these

features may move around both in the amplitude of Tb

and the frequency at which they occur.

This represents the most likely sequence of events for

plausible astrophysical models. We are reassured in this

sequencing since, in the absence of Lyα photons escaping

from galaxies, [? ] X-rays will also produce Lyα photons

and so couple TS to Tγ and, in the absence of X-rays,

scattering of Lyα photons heats the gas. In each case

the relative sequence of events is likely to be maintained.

Yet our ignorance of early times is sufficient that this

may be questioned and indicates the extent to which any

observation will be a useful observation.

We will return to how different models may be distin-

guished later and now turn to the presence of foregrounds

between us and the signal.

III. FOREGROUNDS

At the frequencies of interest to 21 cm observations

(20-250 MHz), the sky is dominated by emission by the

galaxy in the form of galactic synchrotron emission. A
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V. REIONIZATION

In this section, we will consider the possibility of constraining the evolution of the hydrogen

neutral fraction. Predicting the reionization history has attracted a great deal of attention in

recent years. Constraints arise from the Lyman alpha forest, the optical depth to the CMB, and

numerous other locations. Although these may be combined to constrain the reionization history

[e.g. 5], the quality of the data is poor.

Given the uncertainty associated with making detailed predictions for the evolution of xH ,

we will take a toy tanh model for reionization (as used by the WMAP analysis)with parameters

describing the two main features of reionization: its mid point zr and duration ∆z. We will further

assume that the 21 cm spin temperature can be taken to be saturated at the relevant redshifts

(a reasonable although not guaranteed simplifying assumption). With this the 21 cm brightness

temperature is given by

Tb(z) =
T21

2

�
1 + z

10

�1/2 �
tanh

�
z − zr

∆z

�
+ 1

�
. (8)

In principle, the amplitude of the signal T21 is calculable from first principles (T21 = 27 mK for

our fiducial cosmology), but we leave it as a free parameter. This helps us gauge how well the

experiment is really detecting the 21 cm signal.

Figure 6 shows a few different histories for this model.

Before exploring the larger parameter space allowed by the WMAP constraints, we validate our

Fisher matrix against a more numerically intensive Monte-Carlo. Taking fiducial values of zr = 8,

∆z = 1, and Npoly = 3, we fit the model and foreground for 10
6

realisations of the thermal noise.

The resulting parameter contours are shown in Figure 7 along with the Fisher matrix constraints.

These are in good agreement giving us faith in our underlying formalism.

It should be noted though that this formalism breaks down when the Fisher matrix errors

become large enough that reionization parameters are not well constrained. comment on point

at which things actually break down

We now consider two 21 cm global experiments: an optimistic scenario in which we need only

remove a Npoly = 3 polynomial and one where we need a Npoly = 6 polynomial. In each case, we

assume an experiment covering the frequency range 100− 250 MHz in 50 bins and integrating for

500 hours. The resulting potential detection region is shown in Figure 8.

The detection region shows a number of wiggles associated with points in the frequency range

where the shape of the 21 cm signal becomes more or less degenerate with the polynomial fitting.

Foreground

Signal

Extended reionization histories
closer to foregrounds
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FIG. 6: Evolution of the neutral fraction xH and brightness
temperature Tb for a tanh model of reionization (see Eq.8).

and Npoly = 3, we fit the model and foreground for 106 re-

alisations of the thermal noise. This yields an estimate of

the parameter uncertainty that can be expected from ob-

servations and can be used to test our Fisher matrix cal-

culation. The resulting parameter contours are shown in

Figure 7 along with the Fisher matrix constraints. That

they are in good agreement validates our underlying for-

malism.

FIG. 7: Comparison of 68 and 95% confidence regions between
our MC likelihood (green and red coloured regions) and Fisher
matrix (solid ellipses) calculations for a tanh model of reion-
ization with zr = 8 and ∆z = 1 and fitting four foreground
parameters.

The error ellipses show that there is a strong degen-

eracy between T21 and ∆z. This is a consequence of

the way in which foreground fitting removes power from

more extended histories making it difficult to distinguish

a larger amplitude extended scenario from a lower am-

plitude sharper scenario.

Despite the good agreement, this formalism breaks

down when the Fisher matrix errors become large enough

that reionization parameters are not well constrained.

Although this is not a major hurdle here, caution should

be used when errors are much larger than the parameters

being constrained.

FIG. 8: 95% detection region for global experiments assuming
Npoly = 3 (solid curve), 6 (dashed curve), 9 (dotted curve),
and 12 (dot-dashed curve). Also plotted are the 68 and 95%
contours for WMAP5 with a prior that xi(z = 6.5) > 0.95
(green and red coloured regions).

The resulting potential detection region for the above

experiment is shown in Figure 8, where we consider sev-

eral different orders of polynomial fit. The detection re-

gion shows a number of wiggles associated with points

in the frequency range where the shape of the 21 cm

signal becomes more or less degenerate with the poly-

nomial fitting. We also show the 1- and 2 − σ con-

straint regions from WMAP’s optical depth measure-

ment. These constrain the redshift of reionization, but

say little about how long it takes. Adding in a prior that

the Universe is fully ionized by z = 6.5 (specified here

as xi(z = 6.5) > 0.95), as implied by observations of the

Gunn-Peterson trough in high-redshift quasar absorption

spectra [33], removes the region of parameter space with

large ∆z and low zr.

Global experiments can take a good sized bite out of

the remaining parameter space. They are sensitive to

the full range of redshifts, but primarily to the sharpest

reionization histories. Only if Npoly ≤ 6 can histories

with ∆z > 1 be constrained and histories with ∆z � 2.5
appear too extended for high significance detections.

This is unfortunate since models of reionization that

incorporate prescriptions for the sources and sinks of ion-

7

IV. FISHER CALCULATION

The main objective of this paper is to develop a formalism for quantifying the ability of global 21

cm experiments to constrain astrophysical parameters. A straightforward, but brute force approach

to do this by modeling the signal, adding a foreground, and then using Monte-Carlo techniques

to see how well model parameters may be constrained. When faced with the large space of model

parameters to be explored this is inadequate. We therefore explore the use of the Fisher matrix

approach, applicable if the model likelihood is well approximated by a multivariate Gaussian.

The Fisher matrix takes the form

Fij =
1

2
Tr

�
C−1C,iC

−1C,j + C−1
(µ,iµ

T
,j + µ,jµ

T
,i )

�
. (4)

where C ≡ �xxT � is the covariance matrix and µ = �x�. For the 21 cm global signature, our

observable is the observed antennae temperature given in our model as Tsky = Tfg + Tb. The

covariance matrix is taken to be diagonal, since errors in different frequency bins are expected to

be uncorrelated. The covariance matrix is therefore

Cij = δijσ
2
i (5)

with the thermal noise given by the radiometer equation

σ2
i =

T 2
sky

Btint
(6)

where B is the bandwidth and tint is the integration time.

With this the Fisher matrix takes the form

Fij =

�

i

(2 + Btint)
d log Tsky

dpi

d log Tsky

dpj
. (7)

Here there are contributions both from the amplitude of the noise itself and from the signal.

Given this Fisher matrix, the best parameter constraints achievable are given by the Cramer-Rao

inequality σi ≥
�

F−1
ii .

This Fisher matrix offers a fast and, as we will show in the next section, reliable means of

calculating the expected constraints for 21 cm global experiments.

Before proceeding to apply this formalism to models of the 21 cm signal, we should first pause

to examine the limitations of the assumptions that we have made.

1) Full sky 2) Gaussian likelihood - MC 3) Single dipole
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ii .

This Fisher matrix offers a fast and, as we will show in the next section, reliable means of

calculating the expected constraints for 21 cm global experiments.

Before proceeding to apply this formalism to models of the 21 cm signal, we should first pause

to examine the limitations of the assumptions that we have made.

1) Full sky 2) Gaussian likelihood - MC 3) Single dipole

Sky model

Assume full sky experiment covering range [numin,numax]
in N channels of width B and integrating for tint

Pritchard & Loeb 2010
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V. REIONIZATION

In this section, we will consider the possibility of constraining the evolution of the hydrogen

neutral fraction. Predicting the reionization history has attracted a great deal of attention in

recent years. Constraints arise from the Lyman alpha forest, the optical depth to the CMB, and

numerous other locations. Although these may be combined to constrain the reionization history

[e.g. 5], the quality of the data is poor.

Given the uncertainty associated with making detailed predictions for the evolution of xH ,

we will take a toy tanh model for reionization (as used by the WMAP analysis)with parameters

describing the two main features of reionization: its mid point zr and duration ∆z. We will further

assume that the 21 cm spin temperature can be taken to be saturated at the relevant redshifts

(a reasonable although not guaranteed simplifying assumption). With this the 21 cm brightness

temperature is given by

Tb(z) =
T21

2

�
1 + z

10

�1/2 �
tanh

�
z − zr

∆z

�
+ 1

�
. (8)

In principle, the amplitude of the signal T21 is calculable from first principles (T21 = 27 mK for

our fiducial cosmology), but we leave it as a free parameter. This helps us gauge how well the

experiment is really detecting the 21 cm signal.

Figure 6 shows a few different histories for this model.

Before exploring the larger parameter space allowed by the WMAP constraints, we validate our

Fisher matrix against a more numerically intensive Monte-Carlo. Taking fiducial values of zr = 8,

∆z = 1, and Npoly = 3, we fit the model and foreground for 10
6

realisations of the thermal noise.

The resulting parameter contours are shown in Figure 7 along with the Fisher matrix constraints.

These are in good agreement giving us faith in our underlying formalism.

It should be noted though that this formalism breaks down when the Fisher matrix errors

become large enough that reionization parameters are not well constrained. comment on point

at which things actually break down

We now consider two 21 cm global experiments: an optimistic scenario in which we need only

remove a Npoly = 3 polynomial and one where we need a Npoly = 6 polynomial. In each case, we

assume an experiment covering the frequency range 100− 250 MHz in 50 bins and integrating for

500 hours. The resulting potential detection region is shown in Figure 8.

The detection region shows a number of wiggles associated with points in the frequency range

where the shape of the 21 cm signal becomes more or less degenerate with the polynomial fitting.

N=3

N=6

2-sigma 
detection 

region

tint= 500hrs, 
50 channels spanning 100-200MHz

Excluded by Lya forest

6

FIG. 6: Evolution of the neutral fraction xH and brightness
temperature Tb for a tanh model of reionization (see Eq.8).

and Npoly = 3, we fit the model and foreground for 106 re-

alisations of the thermal noise. This yields an estimate of

the parameter uncertainty that can be expected from ob-

servations and can be used to test our Fisher matrix cal-

culation. The resulting parameter contours are shown in

Figure 7 along with the Fisher matrix constraints. That

they are in good agreement validates our underlying for-

malism.

FIG. 7: Comparison of 68 and 95% confidence regions between
our MC likelihood (green and red coloured regions) and Fisher
matrix (solid ellipses) calculations for a tanh model of reion-
ization with zr = 8 and ∆z = 1 and fitting four foreground
parameters.

The error ellipses show that there is a strong degen-

eracy between T21 and ∆z. This is a consequence of

the way in which foreground fitting removes power from

more extended histories making it difficult to distinguish

a larger amplitude extended scenario from a lower am-

plitude sharper scenario.

Despite the good agreement, this formalism breaks

down when the Fisher matrix errors become large enough

that reionization parameters are not well constrained.

Although this is not a major hurdle here, caution should

be used when errors are much larger than the parameters

being constrained.

FIG. 8: 95% detection region for global experiments assuming
Npoly = 3 (solid curve), 6 (dashed curve), 9 (dotted curve),
and 12 (dot-dashed curve). Also plotted are the 68 and 95%
contours for WMAP5 with a prior that xi(z = 6.5) > 0.95
(green and red coloured regions).

The resulting potential detection region for the above

experiment is shown in Figure 8, where we consider sev-

eral different orders of polynomial fit. The detection re-

gion shows a number of wiggles associated with points

in the frequency range where the shape of the 21 cm

signal becomes more or less degenerate with the poly-

nomial fitting. We also show the 1- and 2 − σ con-

straint regions from WMAP’s optical depth measure-

ment. These constrain the redshift of reionization, but

say little about how long it takes. Adding in a prior that

the Universe is fully ionized by z = 6.5 (specified here

as xi(z = 6.5) > 0.95), as implied by observations of the

Gunn-Peterson trough in high-redshift quasar absorption

spectra [33], removes the region of parameter space with

large ∆z and low zr.

Global experiments can take a good sized bite out of

the remaining parameter space. They are sensitive to

the full range of redshifts, but primarily to the sharpest

reionization histories. Only if Npoly ≤ 6 can histories

with ∆z > 1 be constrained and histories with ∆z � 2.5
appear too extended for high significance detections.

This is unfortunate since models of reionization that

incorporate prescriptions for the sources and sinks of ion-

N=12

WMAP
1-sigma
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II. PHYSICS OF THE 21 CM GLOBAL SIGNAL

The physics of the cosmological 21 cm signal has been

described in detail by a number of authors [9, 10] and

we focus here on those features relevant for the global

signal. It is important before we start to emphasis our

uncertainty in the sources of radiation in the early Uni-

verse, so that we must of necessity extrapolate far beyond

what we know to make predictions for what we may find.

None the less the basic atomic physics is well understood

and a plausible understanding of the likely history is pos-

sible.

The 21 cm line occurs at ν21 cm = 1420MHz, which for

redshifts in the range z = 6− 27 redshifts into the range

200-50 MHz. The signal strength may be expressed as a

differential brightness temperature given by

Tb = 27xHI(1+δb)

�
TS − Tγ

TS

� �
1 + z

10

�1/2 �
∂rvr

(1 + z)H(z)

�−1

mK,

(1)

where xHI is the hydrogen neutral fraction, δb is the over-

density in baryons, TS is the 21 cm spin temperature, Tγ

is the CMB temperature, H(z) is the Hubble parameter,

and the last term describes the effect of peculiar veloc-

ities with ∂rvr the derivative of the velocities along the

line of sight. Throughout this paper, we will neglect fluc-

tuations in the signal so that neither of the terms δb nor

the peculiar velocities will be relevant. Fluctuations in

xH and δb will be relevant for the details of the signal,

but are not required to get a broad sense of the signal,

as which we aim for here.

FIG. 1: Purely pedagogic plot. Dotted curve: fully saturated;
dashed curve: no star formation; red curve: saturated with
reionization; blue dashed curve: no reionization; blue dotted
curve: no heating or reionization; blue solid curve: full signal

The evolution of Tb is thus driven by the evolution

of xH and TS and is illustrated for redshifts z < 50 in

Figure 1. Early on, collisions drive TS to the gas tem-

perature TK , which after thermal decoupling has been

cooling faster than the CMB leading to a 21 cm absorp-

tion feature (TS − Tγ < 0). Collisions start to become

ineffective at redshifts z ∼ 80 and scattering of CMB

photons begins to drive TS → Tγ causing the signal to

disappear. In the absence of star formation, this would

be the whole of the story (shown in Figure 1 as the black

dashed curve).

Star formation leads to the production of Lyα photons,

which resonantly scatter off hydrogen coupling TS to the

gas temperature TK via the Wouthysen-Field effect. This

produces a sharp absorption feature beginning at z ∼ 30.

If star formation also generates X-rays, these will heat

the gas first causing a decrease in Tb as the gas temper-

ature is heated towards Tγ and then lead to an emission

signal, as the gas is heated to temperatures TK > Tγ .

For TS � Tγ all dependence on the spin temperature

drops out of equation (1) and the signal becomes satu-

rated. This represents a hard upper limit on the signal.

However, reionization will occur at some point as UV

photons ionize bubbles that percolate ionizing hydrogen

and removing the 21 cm signal.

We may thus identify four main events in the history

of the 21 cm signal: (1) collisional coupling becoming

ineffective (2) Lyα coupling becoming effective (3) heat-

ing occuring (4) reionization beginning (5) reionization

ending. In the scenario described above the first four of

these events generates a turning point (dTb/dz = 0) and

the final event marks the end of the signal. We reiterate

that the astrophysics of the sources driving these events

is very uncertain. Figure 2 shows histories for different

values of the X-ray and Lyα emissivity, parametrized by

fX and fα following [10]. Clearly the positions of these

features may move around both in the amplitude of Tb

and the frequency at which they occur.

This represents the most likely sequence of events for

plausible astrophysical models. We are reassured in this

sequencing since, in the absence of Lyα photons escaping

from galaxies, [? ] X-rays will also produce Lyα photons

and so couple TS to Tγ and, in the absence of X-rays,

scattering of Lyα photons heats the gas. In each case

the relative sequence of events is likely to be maintained.

Yet our ignorance of early times is sufficient that this

may be questioned and indicates the extent to which any

observation will be a useful observation.

We will return to how different models may be distin-

guished later and now turn to the presence of foregrounds

between us and the signal.

III. FOREGROUNDS

At the frequencies of interest to 21 cm observations

(20-250 MHz), the sky is dominated by emission by the

galaxy in the form of galactic synchrotron emission. A
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will occur as UV photons produce bubbles of ionized hy-

drogen that percolate, removing the 21 cm signal.

We may thus identify five main events in the history

of the 21 cm signal: (i) collisional coupling becoming in-

effective (ii) Lyα coupling becoming effective (iii) heat-

ing occurring (iv) reionization beginning (v) reionization

ending. In the scenario described above the first four of

these events generates a turning point (dTb/dz = 0) and

the final event marks the end of the signal. We reiterate

that the astrophysics of the sources driving these events

is very uncertain, so that when or even if these events

occur as described is currently unknown. Figure 2 shows

a set of histories for different values of the X-ray and Lyα
emissivity, parametrized about our fiducial model by fX

and fα representing the product of the emissivity and the

star formation efficiency following Ref. [17]. Clearly the

positions of these features may move around both in the

amplitude of Tb and the frequency at which they occur.

FIG. 2: Dependence of 21 cm signal on the X-ray (top panel)

and Lyα (bottom panel) emissivity. In each case, we consider

examples with the emissivity reduced or increased by a factor

of up to 100. Note that in our model fX and fα are really the

product of the emissivity and the star formation efficiency.

We view this to be the most likely sequence of events

for plausible astrophysical models. We are reassured in

this sequencing since, in the absence of Lyα photons es-

caping from galaxies [21], X-rays will also produce Lyα
photons [22, 23] and so couple TS to TK and, in the ab-

sence of X-rays, scattering of Lyα photons heats the gas

[24]. In each case the relative sequence of events is likely

to be maintained. We will return to how different models

may be distinguished later and now turn to the presence

of foregrounds between us and the signal.

III. FOREGROUNDS

At the frequencies of interest (10-250 MHz), the sky

is dominated by synchrotron emission from the galaxy.

A useful model of the sky has been put together by Ref.

[25] using all existing observations. The sky at 100 MHz

is shown in Figure 3, where the form of the galaxy is

clearly visible. In this paper, we will be focusing upon

observations by single dipole experiments. These have

beam shapes with a typical field-of-view of tens of de-

grees. The lower panel of Figure 3 shows the beam of

dipole (approximated here as a single cos
2 θ lobe) sit-

ting at the MWA site in Australia (approximate latitude

26
◦
59’S), observing at zenith, and integrated over a full

day. Although the dipole does not see the whole sky at

once it does average over large patches. We will therefore

neglect spatial variations (although we will return to this

point in our conclusions).

FIG. 3: Top panel: Radio map of the sky at 100 MHz gen-

erated from Ref. [25]. Bottom panel: Ideal dipole response

averaged over 24 hours.

Averaging the foregrounds over the dipole’s angular re-

sponse gives the spectrum shown in the top panel of Fig-

ure 4. First note that the amplitude of the foregrounds is

large ∼ 100 K compared to the 10 mK signal. Nonethe-

less, given the smooth frequency dependence of the fore-

grounds we are motivated to try fitting the foreground

out using a low order polynomial in the hope that this

leaves the signal behind. This has been shown by many

authors [e.g. 26, 27] to be a reasonable procedure in the

case of 21 cm tomography. There the inhomogeneities

fluctuate rapidly with frequency, so that only the largest

Fourier modes of the signal are removed. In the case of

the global 21 cm signal our signal is relatively smooth in
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hours, the MC calculation shows no sign of significant biasing and is in good agreement with the

Fisher matrix calculation using the turning-point model.
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FIG. 9: Evolution of the 21 cm global signal and its derivative.
In the top panel, we also show a cubic spline fit to the turning
points as described in the text.

be zero at the turning points (enforced by doubling the
data points and the turning points and offsetting them
by ∆ν = ±1 MHz).

For our fiducial model, we take the fiducial parameter
set of [10], assuming a star forming efficiency f∗ = 0.1, a
Lyα emissivity expected for Population II stars fα = 1,
and X-ray emissivity appropriate for extrapolating the
locally observed X-ray-FIR connection fX = 1. This
gives turning points x0=(18.1 MHz, -41 mK), x1=(48.3
MHz, -5 mK), x2=(66.5 MHz, -104 mK), x3=(98.7 MHz,
27 mK), and x4=(180 MHz, 0 mK). The resulting spline
is shown in the top panel of Figure 9. The model does a
good job of capturing the general features of the 21 cm
signal, although there are clear differences in the detailed
shape. Since global experiments are unlikely to constrain
more than the sharpest features this should be adequate
for our purposes.

There is considerable uncertainty in the parameters of
this model, so to gauge the likely model dependence of
the turning points, we make use of the model of [10].
Varying the Lyα , X-ray, and UV emissivity by two or-
ders of magnitude either side of their fiducial values we
find the position and amplitude of the turning points to
form the contours shown in Figure 10. This provides a
useful guide to targeting observations in frequency space.
We have found that a global experiment has very little
sensitivity to features lying outside of the observed fre-
quency band.

Here, since we fix the cosmology, x0 appears as a single
point. The locations of x1 and x3 are controlled by the
Lyα and X-ray emissivity respectively. Only x2 shows

FIG. 10: Parameter space for the frequency and brightness
temperature of the turning points of the 21 cm signal cal-
culated by varying fX = [0.01, 100] and fα = [0.01, 100] for
fixed cosmology and star formation rate f∗ = 0.1.

significant dependence on both Lyα and X-ray emissivity
leading to a large uncertainty in its position. This is good
news observationally, since even a poor measurement of
the position of x2 is likely to rule out a wide region of
parameter space. Since x2 is the feature with both the
largest amplitude and is the sharpest feature we expect
that this is the best target for observation and makes
experiments covering ν = 50−100 MHz of great interest.

Since our model is somewhat approximate it is impor-
tant to check whether it leads to significantly biased con-
straints on the features of interest. One could imagine
that fitting the splined shape might lead to biased esti-
mates of the position of the turning points, for example.
We have checked this using a Monte-Carlo simulation by
fitting the turning-point model to the full calculation sig-
nal for 106 realisations of the thermal noise. As seen in
Figure 11 for an experiment covering ν =45-145 MHz in
50 bins and integrating for 500 hours, the MC calcula-
tion shows no sign of significant biasing and is in good
agreement with the Fisher matrix calculation using the
turning-point model.

The final panel of Figure 11 shows a degeneracy be-
tween Tb2 and Tb3. This might be expected for an ex-
periment whose sensitivity is primarily to the derivative
of the signal, which is left unchanged by shifting both of
these points up or down.

As we look at lower frequencies where the foregrounds
become larger, we must increasingly worry about fore-
ground removal leaving behind systematic residuals that
limit the sensitivity of the experiment. In Figure 12,
we plot the sensitivity of the same experiment to x3 as
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FIG. 12: Dependence of (ν3, Tb3) and (ν2, Tb2) errors with
level of systematic residuals for Npoly = 3 (black solid curve),
6 (red dotted curve), and 9 (blue dashed curve). The dashed
vertical lines indicates the fiducial values Tb3 = 27 mK and
|Tb3| = 107mK.

FIG. 13: Experimental constraint ellipses overlaid on the al-
lowed region for the turning points. Coloured regions (dashed
curves) illustrate contours of fX and fα increasing by an order
of magnitude (red to magenta) from 0.01 to 100.

VII. DARK AGES

The physics of the period before star formation at
z ∼ 30 is determined by well known atomic processes
and so has much in common with the CMB. However,
many models have been put forward that would mod-
ify this simple picture with exotic energy deposition via

annihilating or decaying dark matter [37] or evaporating
black holes [38], for example. During the dark ages, the
21 cm signal acts as a sensitive thermometer, potentially
capable of constraining these exotic processes. Here we
will focus on the standard history and leave consideration
of the possibility of detecting other scenarios to future
work.

The signal during the dark ages reaches a maximum
at x0 = (16MHz, −42 mK), somewhat larger in am-
plitude than the reionization emission signal. However,
at these low frequencies the foregrounds are extremely
large, Tfg ≈ 104 K at ν = 30 MHz, making detection
very difficult. Its is worth noting however that global
experiments have an advantage over tomographic mea-
surements here, since at these early times structures have
had little chance to grow, making the fluctuations much
smaller than during reionization. Further, it is easier to
imagine launching a single dipole experiment beyond the
Earth’s ionosphere rather than the many km2 of collect-
ing area needed for interferometers to probe this epoch
[39, 40].

Given the large foregrounds, long integration times or
many dipoles are required to reach the desired sensitiv-
ity level. Taking Tfg = 104 K at ν = 30 MHz a single
dipole would need to integrate for tint = 1000 hours to
reach 4 mK sensitivity. Removing the foregrounds over
this dynamic range without leaving considerable residu-
als will clearly require very precise instrumental calibra-
tion. Given the challenges, we look at the most optimistic
case as a limit of what could be accomplished.

Taking an experiment covering ν = 5 − 60 MHz in
50 channels and integrating for 8000 hours, we assume
a minimal Npoly = 3 polynomial fit leaving no residu-
als. The resulting constraint on the position and am-
plitude of the dark ages feature are shown in Figure 14.
Such an experiment is capable of detecting the signal,
but only barely. For comparison, we have plotted the
uncertainty arising from cosmological measurements of
Ωmh2 and Ωbh2, the two main parameters determining
the 21 cm signal. This uncertainty is much less than the
experimental uncertainty.

Although we have shown that detecting the dark ages
feature from the standard history would be extremely
challenging, modified histories arising from exotic energy
injection may lead to larger features more easily detected.
Since there is no other probe of physics at 30 < z <
150 global 21 cm experiments offer a unique if extremely
challenging probe of this period.

VIII. CONCLUSIONS

Observations of the redshifted 21 cm line potentially
provide a new window into the high redshift Universe.
Detecting this signal in the presence of large foregrounds
is challenging and it is important to explore all avenues
for exploiting the signal. In this paper, we have focussed
upon the possibility of using single dipole experiments
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VII. DARK AGES

The physics of the period before star formation at
z ∼ 30 is determined by well known atomic processes
and so has much in common with the CMB. However,
many models have been put forward that would mod-
ify this simple picture with exotic energy deposition via

annihilating or decaying dark matter [37] or evaporating
black holes [38], for example. During the dark ages, the
21 cm signal acts as a sensitive thermometer, potentially
capable of constraining these exotic processes. Here we
will focus on the standard history and leave consideration
of the possibility of detecting other scenarios to future
work.

The signal during the dark ages reaches a maximum
at x0 = (16MHz, −42 mK), somewhat larger in am-
plitude than the reionization emission signal. However,
at these low frequencies the foregrounds are extremely
large, Tfg ≈ 104 K at ν = 30 MHz, making detection
very difficult. Its is worth noting however that global
experiments have an advantage over tomographic mea-
surements here, since at these early times structures have
had little chance to grow, making the fluctuations much
smaller than during reionization. Further, it is easier to
imagine launching a single dipole experiment beyond the
Earth’s ionosphere rather than the many km2 of collect-
ing area needed for interferometers to probe this epoch
[39, 40].

Given the large foregrounds, long integration times or
many dipoles are required to reach the desired sensitiv-
ity level. Taking Tfg = 104 K at ν = 30 MHz a single
dipole would need to integrate for tint = 1000 hours to
reach 4 mK sensitivity. Removing the foregrounds over
this dynamic range without leaving considerable residu-
als will clearly require very precise instrumental calibra-
tion. Given the challenges, we look at the most optimistic
case as a limit of what could be accomplished.

Taking an experiment covering ν = 5 − 60 MHz in
50 channels and integrating for 8000 hours, we assume
a minimal Npoly = 3 polynomial fit leaving no residu-
als. The resulting constraint on the position and am-
plitude of the dark ages feature are shown in Figure 14.
Such an experiment is capable of detecting the signal,
but only barely. For comparison, we have plotted the
uncertainty arising from cosmological measurements of
Ωmh2 and Ωbh2, the two main parameters determining
the 21 cm signal. This uncertainty is much less than the
experimental uncertainty.

Although we have shown that detecting the dark ages
feature from the standard history would be extremely
challenging, modified histories arising from exotic energy
injection may lead to larger features more easily detected.
Since there is no other probe of physics at 30 < z <
150 global 21 cm experiments offer a unique if extremely
challenging probe of this period.

VIII. CONCLUSIONS

Observations of the redshifted 21 cm line potentially
provide a new window into the high redshift Universe.
Detecting this signal in the presence of large foregrounds
is challenging and it is important to explore all avenues
for exploiting the signal. In this paper, we have focussed
upon the possibility of using single dipole experiments

tint= 500hrs, 
50 channels spanning 40-140 MHz
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Conclusions

• Global experiments sensitive to sharp reionization histories

• Lower frequencies access onset of X-ray heating

• Performance very sensitive to order of polynomial needed to 
fit foregrounds and level of residuals

• Position and amplitude of turning points useful parametrization

• Much cheaper than interferometers!

• Key challenges: Calibration and RFI

• Plenty of scope for improved analysis techniques 
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TABLE 1
Calibration Corrections and Uncertainties

Source Correction Uncertainty Method

Γ see Fig. 4 < 0.05 measured in field
Lc see Eqn. 3 < 0.05 dB measured in laboratory

Tcal see Eqn. 4 < 10 K checked with precision source
horizon loss 0.05 dB < 0.02 dB model

ground loss at 150 MHz 0.25 dB < 0.05 dB NEC Sommerfeld-Norton
extended screen loss 0.07 dB < 0.05 dB model

antenna loss 0.01 dB < 0.02 dB model aluminum skin resistance
balun loss 0.10 dB < 0.05 dB measured in laboratory

noise out of LNA input 40 K < 10 K measured in laboratory
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Fig. 5.— Example calibrated sky spectrum (gray) after removal
of RFI and subtraction of Tcmb = 2.725 compared to model fit
(solid line). One 25 s integration cycle from observations in the
north-south polarization with a 30m transmission cable at approx-
imately 8 h LST on 7 Dec 2006 was used for this plot.

tests for consistency with expectations from prior mea-
surements.

The radio environment at the Mileura Station is very
quiet. In the 100-200 MHz band there are only occa-
sional very weak signals from distant FM stations via
troposcatter, some weak satellite beacons at 150 MHz
and occasional strong signals from the low earth orbit
(LEO) satellites in the 137-138 MHz band. The tro-
poscatter comes from the horizon and was not detectable
by the EDGES antenna because the horizon response
is more than about 30 dB below the zenith response.
The satellite beacons have narrow band CW signals and
their frequencies were excluded from the analysis. The
LEO satellites were more of a problem because the signal
strengths for some passes were strong enough to result in
some saturation of the 8-bit analog to digital converter.
The only recourse was to excise those time periods. In
addition the frequency band from 137-138 was excluded
from the analysis.

Four configurations of the system were used during the
calibrated observing runs at Mileura Station that pro-
vided relevant measurements. Table 3 lists these con-
figurations. The observations for each night span about
0 h to 10 h LST. Some data excision has been applied
to remove large RFI transient signals. The results of fit-
ting the model for Tsky to the high quality, RFI-free data
from these runs are shown in Figure 6.

The spectral index is typically of order β = 2.5, and is
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Fig. 6.— Derived spectral index between 100 and 200 MHz
(bottom panel) and Tgal at 150 MHz (top panel) as functions of
LST . Three data sets were used in the plots. The data points
indicated with small filled circles are for observations on 7 Dec
2006 using a 30m transmission cable and east-west polarizations,
while the squares are from 30 Nov 2006 and the open circles are
from 1 Dec 2006, both of which used 15 m cables and the north-
south polarization of the antenna. For the 1 Dec 2006 observations,
the ground screen was extended to test the contribution of ground
loss.

TABLE 2
Sensitivity of spectral index and T150 to corrections

Parameter ∆param ∆β ∆T150 K

loss 0.1 dB -0.07 -1
ambient +10 C +0.10 +2

LNA noise -40 K ≈ 0 +1
refl.coeff. -0.1 +0.09 -7

consistent with the measurements of the 1960s and 1970s
for this frequency range. The temperature of the non-
CMB contribution at 150 MHz varies with LST, as ex-
pected, between approximately 240 K and 300 K over the
observed range of LSTs. The temperature measurements
are consistent to within less than 5 K for the north-south
polarization measurements with overlapping LSTs, and
the temperatures calculated for the east-polarization are
about 5 K lower than the equivalent north-south mea-

7

Fig. 7.— The beam pattern projected onto the sky map of
Haslam et al. (1982) scaled to 150 MHz using a spectral index of
2.5. The contours are at 90%, 50% and 10% power levels of a dipole
over a ground plane. The beam is centered at a right ascension of
2 h.

surements, which is anticipated from extrapolation of all-
sky measurements at higher frequencies. The large field
of view of the EDGES dipole antenna beam convolved
with the sky produces very smooth variations with LST
and eliminates much of the structure in both β and T150
that would be observed with more localized observations.

The most notable irregularity in the measurements is
the difference in the variation of the derived spectral
index with LST made with and without the extended
ground screen. While the change in estimated loss from
the model calculations results in about the same average
spectral index around 1 to 3 hours LST the difference
in the spectral index derived from data with different
ground screen sizes is more significant at other ranges
of LST. We take these differences as another indication
of the level of uncertainty due to sources of systematic
error and note that all the spectral index measurements
fall within a range of about 2.4 to 2.6. The most likely
explanation for the increase of the spectral index around
8 hours is due to some change in the beam pattern. Fig-
ure 7 shows the beam at 2 hours. In this range the an-
tenna temperature is a minimum and is least sensitive to
changes in the beam pattern.

Our final value for the spectral index of the background
from 100 to 200 MHz is

β100−200 = 2.5 ± 0.1.

We can combine our value of minimum non-CMB sky
noise at ν = 150 MHZ of (240−2.75)±10 K at α = 2.5 h

with the convolution of the antenna beam with the all
sky map (minus the CMB) at ν = 408 MHz of Haslam et
al. (Haslam et al. 1982) to derive a spectral index value
of

β150−408 = 2.52 ± 0.04.

5. DISCUSSION

The measurement of the spectral index of the back-
ground with a broadband system requires a number of
corrections, but we have shown that it is possible to
achieve an accurate result competitive with other radio
astronomy techniques. As more broadband systems are
built, and the systematics are better understood, there
is potential for improvements in the accuracy through
better modeling and better antenna design for a wider
bandwidth of low reflection coefficient.

Based on the trial measurements with the EDGES sys-
tem presented in this paper, we are confident that the
average spectral index at high Galactic latitudes from
100 to 200 MHz lies between 2.4 < β < 2.6. It should
be noted that this is significantly below the the nomi-
nal value of β = 2.7 often assumed in this range of fre-
quencies, and a little less than the high Galactic latitude
value of β ≈ 2.6 that can be extracted from the analysis
of de Oliveira-Costa et al. (2008). It is consistent with
many of the earlier findings summarized in Table 4.

Finally, since much of this analysis was motivated by
the needs of the redshifted 21 cm experiments, we would
also like to bring attention to the utility of including even
one simple, well understood antenna in the large, ac-
tive dipole arrays being developed. In addition to being
used for absolute measurements of the background, one
well calibrated antenna can be used for the calibration
of aperture arrays with complex beampatterns using the
method described by Little (1958). Such a configuration
is sufficient to calibrate the other elements of the array
through the redundancy in the correlations on baselines
to the single calibrated element and baselines between
uncalibrated elements, and can accomplished using only
unresolved sources whose flux density need not be known.
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stitute of Technology, School of Science, and by the
NSF through grant AST-0457585. JDB is supported by
NASA through Hubble Fellowship grant HF-01205.01-A
awarded by the Space Telescope Science Institute, which
is operated by the Association of Universities for Re-
search in Astronomy, Inc., for NASA, under contract
NAS 5-26555.
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The only recourse was to excise those time periods. In
addition the frequency band from 137-138 was excluded
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Four configurations of the system were used during the
calibrated observing runs at Mileura Station that pro-
vided relevant measurements. Table 3 lists these con-
figurations. The observations for each night span about
0 h to 10 h LST. Some data excision has been applied
to remove large RFI transient signals. The results of fit-
ting the model for Tsky to the high quality, RFI-free data
from these runs are shown in Figure 6.

The spectral index is typically of order β = 2.5, and is
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Fig. 6.— Derived spectral index between 100 and 200 MHz
(bottom panel) and Tgal at 150 MHz (top panel) as functions of
LST . Three data sets were used in the plots. The data points
indicated with small filled circles are for observations on 7 Dec
2006 using a 30m transmission cable and east-west polarizations,
while the squares are from 30 Nov 2006 and the open circles are
from 1 Dec 2006, both of which used 15 m cables and the north-
south polarization of the antenna. For the 1 Dec 2006 observations,
the ground screen was extended to test the contribution of ground
loss.

TABLE 2
Sensitivity of spectral index and T150 to corrections

Parameter ∆param ∆β ∆T150 K

loss 0.1 dB -0.07 -1
ambient +10 C +0.10 +2

LNA noise -40 K ≈ 0 +1
refl.coeff. -0.1 +0.09 -7

consistent with the measurements of the 1960s and 1970s
for this frequency range. The temperature of the non-
CMB contribution at 150 MHz varies with LST, as ex-
pected, between approximately 240 K and 300 K over the
observed range of LSTs. The temperature measurements
are consistent to within less than 5 K for the north-south
polarization measurements with overlapping LSTs, and
the temperatures calculated for the east-polarization are
about 5 K lower than the equivalent north-south mea-
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The period is given by the inverse of the time delay, τd,
of the transmission cable. For the LMR-400 cable,

τd(ν) =
2#

0.85 c
, (8)

where # is the cable length, c is the speed of light, and
the factor of 0.85 is the relative propagation speed com-
pared to free space of a wave in the cable4. Thus, the
characteristic period in the measured spectrum of the si-
nusoidal ripple is τ−1

d ≈ 4 MHz for a 30 m cable. Figure 4
shows the antenna reflection coefficient for EDGES as a
function of frequency. The best match (lowest reflection)
is between 130 and 200 MHz. The reflection coefficient
was also measured using a network analyzer at Haystack
Observatory with similar results.

Lastly, the balun, ground-screen, antenna, and horizon
losses are determined using either laboratory measure-
ments or numerical simulations. For the simple balun
used with EDGES, the loss can be measured in the labo-
ratory by connecting two identical balun assemblies back-
to-back, with balanced connections reversed in polarity
at the interface, and measuring the transmission. The
loss due to the 572 Ω ferrite core choke balun to a coaxial
cable is found using this method to be 0.1±0.05 dB at the
frequencies of interest. The losses due to the finite size
of the ground screen are more difficult to estimate. Nu-
merical simulations using the numerical electromagnetics
code (NEC) Sommerfeld-Norton high accuracy ground
model were performed to estimate these contributions.
The ground loss was found to be about 0.25 dB for the
ground screen at 150 MHz and was found to vary in-
versely with frequency. To further constrain the esti-
mated loss due to the ground screen, measurements were
made in the field after extending the ground screen to a
diameter of about 3.5 m using aluminum foil. The NEC
simulations with the extended ground screen predicted
a loss of 0.07 dB. These measurements are discussed in
the analysis below. The resistive loss in the antenna due
to the finite resistance of the aluminum panels was also
modelled and it was found to be about 0.01 dB. The loss
due to the presence of objects blocking the horizon was
estimated from the beam pattern to be about 0.05 dB.

The contribution of all the calibration corrections de-
termines the total systematic uncertainty in the derived
properties of the radio spectrum. Table 1 summarizes
the corrections discussed in this section and the uncer-
tainty in these corrections. Errors in these corrections
result in errors in the spectral index and the sky noise at
150 MHz derived from these measurements. These sys-
tematic errors dominate the uncertainty in the derived
spectral index.

4. RESULTS

Combining the corrections above to calibrate observa-
tions performed with EDGES yields accurate determi-
nations of the absolute sky temperature. To study the
foreground contribution to the spectrum, which we refer
to as Tgal to distinguish it from the CMB contribution,
we employ the model

Tgal(ν) = T150

(

ν

ν150

)

−β

(9)

1 Data from Times Microwave Systems.
www.timesmicrowave.com/content/pdf/lmr/22-25.pdf

100 110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency, ! [MHz]

An
te

nn
a 

R
ef

le
ct

io
n 

C
oe

ffi
ci

en
t, 
"

Fig. 4.— Antenna reflection coefficient as a function of fre-
quency. A 15th-order polynomial is fit (solid) to the raw measure-
ments (gray).

where T150 is the temperature at ν150 = 150 MHz, and
β is the spectral index. For a model of the complete sky
temperature, we neglect any redshifted 21 cm contribu-
tion and treat the Galactic and extragalactic components
of the foreground spectrum together in Tgal, so that

Tsky(ν) = T150

(

ν

ν150

)

−β

+ Tcmb. (10)

Taking Tcmb = 2.725 Mather et al. (1994), we solve for
β and T150.

Calibrated measurements to accurately determine the
spectral index between 100 and 200 MHz were acquired
while the EDGES system was deployed at Mileura Sta-
tion in Western Australia between November 29 and De-
cember 8, 2006. Figure 5 illustrates an example fit of
the model to a typical observation made on the night of
December 7, 2006, with the approximately north-south
polarization of the antenna. It is clear in Figure 5 that
the model is a good fit to the measurements yielding, in
this case, β = 2.470 and T150 = 283.20.

We derive the expected error in the spectral index and
absolute temperature estimates using the dependencies
listed in Table 2 on the assumption that the systematic
errors add in quadrature. If we take the loss corrections
in quadrature the expected error is 0.09 dB and add to
this an uncertainty of 3 K in the ambient temperature
and an uncertainty 0.05 in the voltage reflection coeffi-
cient the combined effect is an uncertainty of ∆β = 0.08
in spectral index and ∆T10 = 5 K in the sky noise at
150 MHz. The effect of uncertainty in the noise emitted
out of the LNA toward the antenna is negligible.

4.1. Variations in Spectral Index and Temperature

The spectral index and intensity of the non-thermal
contributions to the low-frequency spectrum have been
shown to vary across the sky. Drift scan observations
with EDGES can measure these variations in Tgal (al-
beit convolved with the large antenna beam) as a func-
tion of local apparent sidereal time (LST). In addition,
the intensity of the measured spectrum should vary with
the polarization direction of the dipole due to differences
in the shape of the antenna beam. Sampling both the
north-south and east-west polarizations allows additional

Single dipole sky measurements


