CMB spectral distortion constraints from ground, suborbital, and space experiments

Michael Seiffert, Jet Propulsion Laboratory, Caltech

Keck Institute for Space Studies The First Billion Years Pasadena, August 2010

Current experimental constraints on CMB spectral distortions

Description of (some) of the experiments

What's next?

Recent, sensitive constraints on spectral distortions

constraints on spectral distortions

COBE - FIRAS

Far-Infrared Absolute Spectrophotometer

Polarizing Michelson interferometer

Measures the spectral difference between 7 deg sky patch and internal blackbody

Absolute calibration provided by moveable external calibrator

Credit: COBE team

FIRAS

FIRAS test unit

FIRAS horn

Credit: COBE team

FIRAS results

Errors on this curve are of order 1 part in 10⁴

Conventional to show results this way, but what the experiment is actually measuring is something closer to zero.

Fixsen et al., ApJ, 473, 585 (1996)

FIRAS CMB distortion constraints and residuals

FIRAS galaxy modeling

Galactic emission modeled using template fits from DIRBE 140 and 240 $\mu m.$

FIRAS residual emission includes a fit of emissivity and temperature to a $v^2 B(T)$ model

Synchrotron, free-free, extra-galactic radio sources not included

FIRAS external calibrator

constraints on spectral distortions

Ground experiments

Ground experiments typically require a window

Must look through bulk of the atmosphere

South Pole

Atmospheric contribution limits ground-based measurements

ARCADE I

Absolute Radiometer for Cosmology and Diffuse Emission

ARCADE Gondola Schematic Diagram

ARCADE Cryostat

Multiple levels of differencing

No window

Instrument regulated at 2.725 K

ARCADE I instrumented with 10 GHz and 30 GHz receivers

ARCADE 1 results

10 GHz : 2.721 ± 0.010 K

 $30 \text{ GHz}: 2.694 \pm 0.032 \text{ K}$

Fixsen et al., *ApJ*, 612, 86 (2004).

No improvement on spectral distortion limits over FIRAS, but rather validation of measurement technique for more ambitious experiment.

ARCADE I Calibrator

Kogut et al., Rev Sci Instr. 75, 5079 (2004), [astro-ph/0402580]

Arcade 1 foregrounds

Observations at Galactic latitude 13 < b < 83, majority at b > 35.

Foreground contribution estimated using models of the synchrotron, free-free, and dust emission derived from the Wilkinson Microwave Anisotropy Probe (WMAP) (spectral index) with zero point constraint from Haslam 408 MHz map.

10 GHz : $1.4 \text{ mK} \pm 2 \text{ mK}$ 30 GHz : < 0.5 mK

Uncertainty driven by uncertainty in the spectral index.

ARCADE II

LOON FACILIT

lestine, Texas

GSFC

A. Kogut (PI) D. Fixsen M. Limon (now at Columbia) P. Mirel E. Wollack

JPL

S. Levin M. Seiffert

UC Santa Barbara P. Lubin J. Singal (now at Stanford)

Nat. Inst. Space Res. (Brazil) T. Villella A. Wuensche

ARCADE II

1.5 m open aperture with 1800 liters LHe at launch

Launch in July 2006 from Palestine, TX

4 hours observation at float

ARCADE II results

First flight: 8.0 GHz : 2.90 ± 0.12 K 8.3 GHz : 2.77 ± 0.16 K Singal et al., ApJ, 653, 835 (2006)

Second flight:							
3.20	$\textbf{2.777} \pm 0.010$						
3.41	$\textbf{2.761} \pm \textbf{0.008}$						
7.98	$\textbf{2.761} \pm \textbf{0.013}$						
8.33	$\textbf{2.742} \pm \textbf{0.015}$						
9.72	$\textbf{2.730} \pm \textbf{0.005}$						
10.49	$\textbf{2.738} \pm \textbf{0.006}$						
29.5	$\textbf{2.529} \pm \textbf{0.155}$						
31	$\textbf{2.573} \pm \textbf{0.076}$						
90	$\textbf{2.706} \pm \textbf{0.019}$						

Instrumental systematics

Singal et al., ApJ accepted

Component	3L	3H	8L	8H	10L	10H	30L	30H	90L	90H
Balloon	0.1	0.1	0.2	0.2	0.3	0.3	1.9	2.0	14.8	14.8
Reflector shield	1.5	0.9	4.2	4.5	0.5	0.5	0.8	0.8	0.8	0.7
$Lights^{a}$	0.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Spreader bar	8.5	4.3	31.4	36.6	1.7	1.1	1.3	1.7	1.3	1.1
Upper Suspension ^b	0.1	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Lower Suspension ^b	0.0	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Cold Flare ^c	0.3	0.3	0.3	0.5	0.3	0.3	0.3	0.3	0.3	0.3
Total	10.8	5.8	36.6	42.2	2.9	2.3	4.4	4.8	17.2	16.9

ARCADE II calibrator

Fixsen et al., *Rev. Sci. Instrum*, 2005, 77, 064905 Absorber cones cast onto aluminum core

Temperature is adjustable

Reflectivity varies with frequency 1×10^{-4} at 3 GHz 3×10^{-6} at 90 GHz

26 RuO thermometers embedded Precision 0.15 mK Accuracy 1 mK

Gradients in flight: 600 mK front-to-back 20 mK transverse

Sounding rockets ...

Freedom from the atmosphere Short flights Concern about residual environment

Gush, Halpern, & Wishnow, PRL, 65, 537 (1990)

Polarizing interferometer External calibration on the ground, but not in flight

Conclusion - What's next?

Raw Sensitivity is not a fundamental limit

Important ingredients: Foregrounds Calibration Instrumental systematics

Approach of proposed space experiments will be discussed this week FIRAS II Fixsen & Mather '02

Diffuse Microwave Emission Survey

R.A. Shafer, J. Mather (GSFC), A. Kogut, D.J. Fixsen (HSTX), M. Seiffert, P.M. Lubin (UCSB), S.M. Levin (JPL)

1996BAAS...28S1289S

Measurements of the CBR Frequency Spectrum at Low Frequencies: Ground and Space Observations

G. SIRONI Physics Department, University of Milano, Milano
G. BONELLI Istituto IFCTR/CNR-Milano
G. DALL'OGLIO Physics Department-III, University of Rome, Roma
E. PAGANA, S. De ANGELI FPM Space s.r.l., Torino
M. PERELLI IMT, Roma

The Primordial Inflation Explorer (PIXIE) Mission

Alan J. Kogut^{*a}, David T. Chuss^a, Jessie L. Dotson^b, Dale J. Fixsen^a, Mark Halpern^c, Gary F. Hinshaw^a, Stephan M. Meyer^d, S. Harvey Moseley^a, Michael D. Seiffert^d, David N. Spergel^f, Edward J. Wollack^a