

Foregrounds and secondary science: Spinning dust radiation

Yacine Ali-Haïmoud Caltech

Collaborators: Chris Hirata, Clive Dickinson, Kedron Silsbee

KISS workshop The First Billion Years August 19th 2010

Outline

- Spinning dust as a new, "anomalous" CMB foreground
- Ingredients of the theory
- Spinning dust radio lines: how bad is the contamination of Recombination lines?
- Secondary science: PAHs

• What cosmologists want:

• What the Galaxy gives us:

Need to understand Galactic foreground emission.

The standard Galactic foregrounds

- Synchrotron Radiation $T_{\nu} \propto \nu^{-\alpha} \sim \nu^{-3}$ $N(E) \propto E^{-(2\alpha-3)}$
- Thermal Bremsstrahlung (Free-Free)

 $T_{\nu} \propto n_e n_p e^{-\frac{h\nu}{kT_e}} \nu^{-2} g(\nu, T_e)$

- "Thermal" (vibrational) dust $T_{
 u} \propto
 u^2$
- Recently, an additional "anomalous" emission was detected

First detection of the "anomalous emission"

Extremely good spatial correlation, despite the large frequency difference (two orders of magnitude !)

Also: Kogut et al. 1996, de Oliveira-Costa et al. 1997

The free-free hypothesis

- Leitch et al. (1997) find $\epsilon_{\nu} \sim \nu^{-0.2}$ very similar to free-free radiation $\epsilon_{\nu}^{ff} \propto n_e n_p T^{-1/2} e^{-\frac{h\nu}{kT}} \bar{g}_{ff}(T,\nu)$
- Hα emission : subsequent to the recombination of ionized Hydrogen.

$$e + p \rightarrow H^* + \gamma \rightarrow H(n=3) + \gamma \rightarrow H(n=2) + \gamma \rightarrow H(Is) + \gamma$$
$$\epsilon_{\nu}^{H\alpha} \propto n_e n_p T^{-1.2}$$

- Upper bounds on H α imply $T > 10^6$ K to explain the anomalous emission
- Heating enough gas to reproduce anomalous emission to $T > 10^6$ K requires ~ 100 times the energy input from supernovae. \Rightarrow **Not free-free**

Spinning dust emission. Draine & Lazarian, 1998

For a spherical grain: $P(\omega) = \frac{2}{3c^3}\omega^4 \mu_{\perp,a}^2$ emitted at $\nu = \omega/2\pi$

• Emissivity : $\epsilon_{\nu} = 2\pi \int da \frac{dn_{gr}}{da} 4\pi \omega^2 f_a(\omega) P(\omega)$ grain abundance (from IR emission and extinction) Rotation rate probability distribution

The Fokker-Planck equation for $f_a(\omega)$

$$\frac{\partial f_a}{\partial t} = \frac{\partial}{\partial \omega} \left[D(\omega) f_a(\omega) \right] + \frac{1}{2} \frac{\partial^2}{\partial \omega^2} \left[E(\omega) f_a(\omega) \right]$$

= 0 (steady-state)

$$D(\omega) = -\lim_{\delta t \to 0} \frac{\langle \delta \omega \rangle}{\delta t}$$
$$E(\omega) = \lim_{\delta t \to 0} \frac{\langle \delta \omega^2 \rangle}{\delta t}$$

10

rotational damping (drift) rate

rotational excitation (diffusion) rate

Non thermal, non Maxwellian distribution function

Rotational excitation and damping mechanisms

- Collisions with ions/atoms
- Interaction with the stochastic plasma electric field
- Infrared emission

• Spectrum depends on multiple parameters: environment: n_H , T, $u_{v, XH+}$, x_C , x_{H2} (environment)

grain properties: $\mu(a)$, $n_{gr}(a)$

Emission dominated by the smallest dust grains: PAHs

Dipole moment:

- Dehydrogenation
- Super-hydrogenation
- Substitution
- PAH-metal complexes

Example spectrum

 $\Delta v_a = \hbar/(2\pi I_a) = 2B_a$

Nc	24	46	92	175	340	675
Δv _a (MHz)	330	90	20 1	20	7	2

Disklike Spherical

• If only one type of grains: $\Delta T_{\nu}/T_{\nu} \approx \Delta v_a/\Delta v_{obs}$

• If several types of grain: [* hand-wavy *] $\Delta T_{\nu}/T_{\nu} \approx \Sigma_a \Delta v_a / \Delta v_{obs} j_{\nu(a)} / j_{\nu(tot)}$

• With the above numbers, for $\Delta v_{obs} \approx 500$ MHz at $v_{obs} \approx 10$ GHz: $\Delta T_v/T_v \approx 1-10$ %.

• With $T_v \approx 0.1$ mK this is $\Delta T_v > \mu K$ (?)

• Issue for CO studies ?

Complications and subtleties

• Grains are not spherical, not rotating about the axis of greatest inertia.

- For given conditions, total angular momentum ~0.7 lower, peak frequency ~1.4 higher. (Silsbee, Ali-Haïmoud & Hirata, 2010)
- A different forest of lines. Does it help or not ... ?

Secondary science: learning about PAHs and the ISM

- Why are PAHs important:
- PAHs are a significant source of heating PAH + $\Upsilon \rightarrow PAH^+ + e^-$
- They contribute to the ionization balance of the ISM

 $PAH^- + C^+ \rightarrow PAH + C$

PAHs: current picture

Generally agreed upon picture. Some weak bands are controversial: superhydrogenated molecules ?

PAHs: current picture Tielens, 2008

C-H out of plane bending modes:
 I I.2 µm: lone C-H groups ⇒ long edges

12.7 μ m: duos/trios \Rightarrow corners

Circumstellar PAHs in PNes: more compact

ISM PAHs: more corners (\Rightarrow smaller or more irregular)

I 5-20 µm region: skeleton vibrations, more molecule-specific
 Less experimental data

ISM PAHs seem to be dominated by a few classes of molecules

 Lots of progress in observations and theory, but somewhat blurry picture... Fits require messing up with line positions, widths and strengths

Learning from rotational lines

• Can compute rotational constants and dipole moments from DFT (e.g., PANHs Hudgins, Bauschlicher, & Allamandola, 2005)

- Basics of rotation dynamics theory in place (if you trust us...)
- mid-IR bands are indicators of physical conditions in the ISM: 6.2/11.3 indicator of degree of ionization of PAHs => $G_0T^{1/2}/n_e$
- Could use the rotational lines as probes of the ISM
- Spinning dust absorption against strong background radio sources?

TABLE 5 Calculated Dipole Moments for the Singly Substituted Isomers of the N-coronene, N-ovalene, N-circumcoronene, and N-circum-circumcoronene Cations

	DIPOLE MOMENTS		
Species	μ _a (D)	μ _b (D)	μ (D)
N-coronen	e Cations		
1N	5.48	0.19	5.49
2N	3.69	0.00	3.69
3N	2.67	0.00	2.67
N-ovalene	e Cations		
1N	7.10	0.98	7.17
1′N	5.38	4.81	7.21
1″N	4.92	4.26	6.51
1‴N	0.00	3.47	3.47
2N	5.25	1.19	5.38
2′N	1.59	3.65	3.98
3N	4.32	1.02	4.44
3′N	1.29	1.99	2.37

N-circumcoronene Cations

4N.....

0.00

1.56

1.56

1N	9.23	0.23	9.23
1′N	6.99	0.00	6.99
2N	6.77	0.47	6.79
3N	5.30	1.20	5.43
4N	4.55	0.00	4.55
5N	1.32	0.00	1.32

TABLE 6

CALCULATED ROTATIONAL CONSTANTS FOR THE SINGLY SUBSTITUTED ISOMERS OF THE N-CORONENE, N-OVALENE, N-CIRCUMCORONENE, AND N-CIRCUM-CIRCUMCORONENE CATIONS

	Ro	ROTATIONAL CONSTANTS			
Species	A	B	C		
	(GHz)	(GHz)	(GHz)		
N-coronenes	0.334-0.337	0.331-0.336	0.166-0.168		
N-ovalenes	0.238	0.148	0.091		
N-circumcoronenes	0.066	0.066	0.033		
N-circum-circumcoronenes	0.021	0.021	0.011		

Hudgins, Bauschlicher, & Allamandola, 2005