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Importance of tropical forests

e Major role in global carbon
cycle:
e 1/3 of terrestrial GPP (gross
primary productivity)

e 2/3 of terrestrial biomass
carbon stocks

 Intact tropical forests ~ 1/2 of
current terrestrial C sink

e Uncertainty regarding tropical
forest response to global
change dominates uncertainty
in future global C budget

 Majority of terrestrial species
diversity
e ~2/3 of tree species

e ~3/4 of terrestrial vertebrate
species




Tropical forests in global
vegetation models




What do the models try to capture? Everything needed to get the
carbon budget right!
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What do global vegetation models
need?

e Driver data:

* Climate —temperature, rainfall, solar radiation, lightning, fires, soil
moisture

* Topography, geology, geomorphology — high resolution ground
topography, insights into nutrient availability from hyperspectral

 Human influences — roads, timber extraction, fires, proximity to
settlements

* For parameterization:

* Plant functional trait data — tree height and crown allometry, leaf traits,
wood traits, root traits, carbon allocation rules

e For evaluation:
* Forest structure — tree size distributions, above-ground biomass
e Forest dynamics — productivity, mortality

* Woody plant composition — relative abundances of functional types, of
different trait combinations

* Plant “behavior” — leaf phenology, leaf area index, sap flux, individual
growth

e Stand-level fluxes — eddy covariance, evapotranspiration



What questions can global
vegetation models help with?

* Elucidating underlying mechanisms:

 what is needed to reproduce observed patterns of
spatial and temporal variation?

e what is the relative importance of different processes
and mechanisms?
* Predicting responses to novel future conditions

e Only if the models capture the mechanisms sufficiently
well!
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Ground-based datasets
for tropical forests



Smithsonian ForestGEO

(formerly known as the Center for Tropical Forest Science, CTFS)

Large-scale forest census plots
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® MarineGEO Sites

6.4 million living trees, 10,000 species, 901 forest years
67 sites, 26 countries, >100 partner institutions




ForestGEO sites span global variation in forest type

Biome boundaries vs.
average climate

(Whittaker 1975)
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Core tree censuses
(plots mostly >16 ha)

All trees > 1 cm diameter are
e Tagged and mapped
 |dentified to species
e Measured in diameter

Associated products

e Forest structure and biomass B
stocks

e Dynamics: mortality,
recruitment, productivity

* Composition




Ground-based data collection at ForestGEO plots
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DNA barcoqle.s




Near-surface remote
sensing at ForestGEO



UAV imagery linked to tagged trees to track phenology, crown dynamics

12:55 PM

Field work by Carrie Tribble, Pablo Ramos,
Paulino Villareal, and Areli Benito

Park et al., submitted
Muller-Landau et al., in prep




LIDAR for some plots & surrounding
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For example, canopy height is
greater on valleys than in ridges.

Detto et al., 2013, PLOS ONE

Has resulted in new knowledge
of spatial patterns in forest
structure at landscape scale
with respect to topography and

geology.




Promise of hyperspectral to map species and traits in

Some tree
species can be
specifically
identified and
mapped.

Baldeck et al.
2015 Plos One
mapped 3 species
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Natural Metropolitano, Fort Sherman, and Chamela. Data were gathered in
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Lianas (woody vines) — important
and difficult to study

Lianas reduce tree growth
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Some findings from
ForestGEO




Finding: Tree community composition
varies strongly with topography and soils

(a) Barro Colorado Island

(b) Korup

Measured soil and topographical variables explain 13-39% of tree community variation at

20 m scales in eight large forest plots.
Baldeck et al. 2012 Proc Roy Soc



Finding: Carbon stocks vary greatly among tropical forests

even very locally —among 1-ha plots within a 16-50 ha plot
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his heterogeneity means that
calibration plots smaller than footprint
area greatly increase uncertainty

CV in AGB (%)
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Finding: Wood density predicts species
demographic rates within and across sites

So changing functional composition is expected to affect demography.
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Net biomass change

(Mg ha ' yr)

Finding: Old-growth tropical ForestGEO /
CTFS sites are on average carbon sinks
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Finding: Functional composition is

shifting over time within sites

Site High Wood Density Low Wood Density Large Seeds Small Seeds

BCI 0.18 [—0.36,0.66] 0.14 [-0.55,0.76] 0.15 [-0.55,0.75] —0.01 [-0.64,0.55]
Edoro 0.17 [-0.38,0.72] —0.94 [-1.80,—0.23] 0.29 [-0.21,0.77] —0.66 [—1.26,—0.12]
Lenda 0.23 [-0.05,0.48] 04 [-0.17,0.89] 0.3 [0.02,0.54] 0.15 [-0.50,0.68]
HKK 0.31 [0.04,0.57] —0.21 [-0.63,0.14] 0.16 [—-0.11,0.40] 0.62 [0.31,0.91]
Lambir 0.16 [-0.12,0.40] 0.22 [-0.08,0.48] 0.35 [0.06,0.62] 0.14 [-0.12,0.38]
La Planada 0.16 [-0.32,0.64] 0.59 [0.28,0.90] 0.51 [0.21,0.78] 0.77 [0.10,1.36]
Palanan 0.61 [0.14,1.04] —0.88 [-1.83,—0.03] —0.32 [-1.09,0.36] 0.8 [0.27,1.28]
Pasoh 0.56 [0.12,0.95] 0.07 [—0.55,0.60] 0.53 [0.03,0.96] 0.72 [0.32,1.03]
Sinharaja —3.67 [—4.97,—2.44] 0.92 [0.56,1.29] —2.01 [-2.89,—1.16] 0.89 [0.37,1.62]
Yasuni 0.03 [-0.42,0.46] 0.09 [-0.47,0.62] 0.1 [-0.28,0.45] 0.29 [-0.36,0.90]
Average —0.12 [-0.30,0.04] 0.04 [-0.16,0.22] 0.01 [-0.17,0.16] 0.37 [0.19,0.54]
Average 0.27 [0.12,0.41] —0.06 [-0.26,0.13] 0.23 [0.07,0.37] 0.31 [0.13,0.48]
(without Sinharaja)

Luquillo® —043 [-1.07,0.21] —0.08 [-1.14,1.22] 047 [-0.58,1.43] —2.61 [-3.66,—1.64]
Mudumalai® 0.60 [0.30,0.90] —2.82 [—-3.98,-1.77] 0.83 [0.61,1.05] 1.49 [1.04,1.98]

Chave, Condit, Muller-Landau et al. 2008



Finding: The relationship of
tree species richness to
productivity and biomass

varies with spatial scale.
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Finding: Tree species abundances are changing
faster than can be explained by drift/chance alone
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Squared change in abundance (N, — N,)?)
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Finding: Tree species abundances are changing
faster than can be explained by drift/chance alone
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