

Understanding Astrobiological False Positives from Terrestrial Microbiology

Martin Homann

Biosignatures in terrestrial and planetary contexts

- **Objects, substances, and/or patterns** whose origin specifically require a biological agent (Des Marais et al. 2003).
- Candidate biosignatures are ranked by 3 criteria: reliability, survivability, and detectability.
- The usefulness of a biosignature comes not only from the probability of life having produced it, but also from the improbability of non-biological processes producing it (Mustard et al, 2013).

What lines of evidence provide the clearest validation of ancient biology in the rock record?

Biogenicity criteria

CENTIMETER

- Did the object form in a demonstrably habitable paleoenvironment?
- Is it assuredly endogenic and syngenetic to the host rock?
- Are morphology and biofabric consistent with a biotic origin?
- Is the chemical and isotopic composition distinctively life-like?

Multiple, independent lines of evidence are needed to establish biogenicity.

Fossil Biosignatures in Deep Time and Space

Life as we known it

- Carbon-based and requiring a water solvent
- CHNOPS key biogenic elements of life on Earth

Where to look for?

- Archean sedimentary rock record: 4 2.5 Ga
- Lithified aquatic sediments: carbonates, cherts, ... sandstones

What to look for?

- Morphological biosignatures (biofabrics, microfossils)
- Chemical biosignatures (stable isotopes, biominerals, biomarkers)
- Traces of microbial life: microbial mats, biofilms, organic matter

E

Early diagenetic mineralization is key for preservation and survivability of biosignatures.

Microbial mats

Laminated microbial communities; mainly bacteria and archaea

Microbial mats

Laminated microbial communities; mainly bacteria and archaea

Biosignature and life detection methods

Chan et al, 2019

Examples of terrestrial biosignatures in deep time

Traces of early life in the Archean rock record

Pilbara

Wacey, 2009

Homann, 2019

Barberton Greenstone Belt (BGB), South Africa

Evidence of early life in the BGB (3.5 – 3.2 Ga)

 \leq

~~~

Homann et al., 2016

Homann et al., 2015

Ν

Moodies Group

Fig Tree Group

20.km

Onverwacht Group (undiff.)

W Weltevreden Fm.

Mendon Fm.

Komati Fm.

Kromberg Fm.

Theespruit Fm.

Sandspruit Fm

Hooggenoeg Fm.

\_\_\_\_

1 cm

31°30'



# Traces of early life in the Buck Reef Chert



Stratigraphic thickness: 250 – 400m; exposed for nearly 50 km



Black and white banded chert



Silicified evaporites



Homann, 2019

## Microbial mats in the 3.4 Ga Buck Reef Chert

#### Silicified mats draping carbonaceous grains



Tice and Lowe et al., 2004; Tice, 2009



Eroded, rolled-up mat fragments indicate former cohesive consistency.

#### **Carbonaceous biofilms**







Alleon et al., 2021

# Microstructures of (non)biogenic origin

#### **Filamentous structures**





Walsh 1992; 2000

**Spheroidal structures** 



Glikson et al. (2008); Walsh (1992); Kremer and Kazmierczak (2017); Knoll and Barghoorn, 1977

### Microfossils in the 3.4 Ga Buck Reef Chert

#### **Lenticular microfossils**



Pflug, 1966; Walsh 1992; Oehler et al., 2017



Alleon et al., 2018

## Possible stromatolites in ~3.3 Ga cherts



- Stratigraphic thickness: 1 20 cm within a 5 m thick chert layer
- Scattered outcrops for >10 km along strike



# Stromatolites or silicious sinter deposits?



- Domal to pseudo columnar growth morphologies
- Crinkly, carbonaceous laminations contain Mg-Bo-Cr tourmaline
- Mineralization was likely driven by boron-rich hydrothermal fluids (Byerly et al., 1986; Lowe and Byerly, 2015)



### Organic Carbon isotopes and Raman spectroscopy





- δ<sup>13</sup>C<sub>org</sub> values range between
   -34.5‰ and -22.1‰ (n=16)
- consistent with biogenic origin



δ<sup>13</sup>C<sub>org</sub> (‰)



 Raman spectroscopy confirms presence of mature carbon

• T<sub>peak</sub>: 440°C

Alice Hawkins, 2022, MSc thesis

#### El Tatio geothermal field, Chile



# Microbial mats and evaporative silicification in hot spring silica sinters





#### Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile

Steven W. Ruff<sup>1</sup> & Jack D. Farmer<sup>1</sup>





Ruff and Farmer, 2016



# Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile

Steven W. Ruff<sup>1</sup> & Jack D. Farmer<sup>1</sup>



Ruff and Farmer, 2016

#### Morphogenesis of digitate structures in hot spring silica sinters of the El Tatio geothermal field, Chile

Jian Gong<sup>1,2</sup> | Carolina Munoz-Saez<sup>3</sup> | Dylan T. Wilmeth<sup>1,4</sup> | Kimberly D. Myers<sup>1</sup> | Martin Homann<sup>5</sup> | Gernot Arp<sup>6</sup> | John R. Skok<sup>7</sup> | Mark A. van Zuilen<sup>1</sup>



Gong et al., 2021

### Microbial mats in the 3.22 Ga old Moodies Group



# The 3.22 Ga Moodies Group

- Earth's oldest well-preserved continental to marine transition
- Very-high-resolution record (3.6 km deposited over 1 to 14 Myr)
- Paleoenvironment: alluvial to deltaic settings, with a dominance of coastal plains and tidal deltas





Homann et al., 2015; 2016



## Fossil microbial mats...

fossil mats

sandstone

fossil mats

# ...formed a primary microrelief

fossil mats

#### sand ripple

#### Exceptionally well-preserved sedimentary structures



#### Stratigraphic correlation and depositional facies



#### Morphological adaptation to different hydrodynamic settings



#### Microbially induced sedimentary structures



### Microbially induced sedimentary structures on Mars?





Noffke, 2015

### Fossil mats are preserved as organic-rich laminations



Homann, 2016

### Laminae composed of filamentous microstructures



# Scanning electron microscopy analysis



### Raman analysis confirms:

#### (1) Carbonaceous composition of the laminae



#### (2) Syngenicity of the kerogen



Homann et al., 2018

mod. after Wacey, 2009

# Comparison of marine and fluvial mats

#### Marine facies

#### **Fluvial facies**



- Interbedded with medium- to coarsegrained sandstones
- Crinkly and tufted growth morphologies
- Interbedded with pebbly sandstones and conglomerates
- Mostly planar and generally thicker mats

### Organic carbon and nitrogen isotope analysis



**<u>Fluvial mats:</u>** -24 <  $\delta^{13}$ C < -18‰

**\*** consistent with autotrophic carbon fixation via the *Calvin-Benson cycle* 

Marine mats:

 $-34 < \delta^{13}C < -21\%$ 

 best explained with carbon fixation via Wood-Ljungdahl pathway, which includes methanogens and sulfate reducers



 Fluvial mats:
  $+2 < \delta^{15}N < +5\%$  

 Marine mats:
  $0 < \delta^{15}N < +3\%$ 

- \* Biological mechanisms that produce biomass with  $\delta^{15}N > +2\%$ :
- 1) Partial assimilation of ammonium (NH<sub>4</sub><sup>+</sup>)
- 2) Partial nitrification
- 3) Partial denitrification



# Summary

 Multiple, independent lines of evidence are needed to establish biogenicity; morphology alone is not enough.

\* Early diagenetic mineralization is key for the preservation and survivability of biosignatures.



 Silicified microbial mats are some of the most robust evidence for early life on Earth.

# Acknowledgements

Caltech

**Christoph Heubeck** Stefan Lalonde **Pierre Sansjofre Tomaso Bontognali** Mark Van Zuilen Jian Gong Mike Tice Dylan Wilmeth **Alessandro** Airo **Bryan Killingsworth** Raphael Baumgartner Martin Van Kranendonk

🔰 @matworlds



**≜UC** 



**ETH** zürich

SPACE - X Space Exploration Institute

### ICDP drilling project: Barberton Archean Surface Environments







#### ICDP drilling project BASE



Site 3 (Saddleback Syncline): Post-drill geological cross section

