Microarcsecond-size Black Holes

Kazu Akiyama

(NRAO Jansky Fellow / MIT Haystack Observatory)

Dom Pesce (SAO/CfA), Alexander Raymond (SAO/CfA) Venkatessh Ramakrishnan, Neil Nager (U. Concepción), Vincent Fish (MIT Haystack), Michael Johnson and Many Others

Non-spinning Black Hole

Non-spinning Black Hole Maximumly spinning BH 4.9 Rs 5.2 Rs BH

(Courtesy of Hung-Yi Pu)

Non-spinning Black Hole

Maximumly spinning BH

4.9 Rs

- Diameter of the "shadow" ~ 5 Rs
- It changes by only ~4% (4.84-5.2 Rs) (Bardeen 1973, Chan et al. 2013)

(Courtesy of Hung-Yi Pu)

$$R_{\rm s} = \frac{2GM}{c^2} = 2.95 \,\mathrm{km} \, \left(\frac{M}{1 \,M_{\rm solar}}\right)$$

$$\theta_{\rm shadow} pprox \frac{10GM}{c^2D} \sim 0.1 \,\mu{\rm as} \left(\frac{M}{M_{\odot}}\right) \left(\frac{D}{1 \,{\rm pc}}\right)^{-1}$$

Sun

Shadow Diameter 0.1 µas @ 1 pc

$$\theta_{
m shadow} pprox rac{10GM}{c^2D} \sim 0.1 \,\mu{
m as} \left(rac{M}{M_{\odot}}
ight) \left(rac{D}{1 \,{
m pc}}
ight)^{-1}$$

Sun

Stellar mass BH

$$\theta_{\rm shadow} \sim 0.001 \,\mu {\rm as} \left(\frac{M}{10 M_{\odot}}\right) \left(\frac{D}{1 \,{\rm kpc}}\right)^{-1}$$

Shadow Diameter 0.1 µas @ 1 pc

$$\theta_{
m shadow} pprox rac{10GM}{c^2D} \sim 0.1 \,\mu{
m as} \left(rac{M}{M_{\odot}}
ight) \left(rac{D}{1 \,{
m pc}}
ight)^{-1}$$

Sun

Stellar mass BH

$$\theta_{\rm shadow} \sim 0.001 \,\mu {\rm as} \left(\frac{M}{10 M_{\odot}}\right) \left(\frac{D}{1 \,{\rm kpc}}\right)^{-1}$$

Intermed. mass BH

@ Galactic Center

$$\theta_{\rm shadow} \sim 0.01 \,\mu {\rm as} \left(\frac{M}{10^4 M_{\odot}}\right) \left(\frac{D}{8 \,{\rm kpc}}\right)^{-1}$$

Shadow Diameter 0.1 µas @ 1 pc

$$\theta_{\rm shadow} pprox \frac{10GM}{c^2D} \sim 0.1 \,\mu{\rm as} \left(\frac{M}{M_{\odot}}\right) \left(\frac{D}{1\,{\rm pc}}\right)^{-1}$$

Sun

Shadow Diameter 0.1 µas @ 1 pc

Stellar mass BH

$$\theta_{\rm shadow} \sim 0.001 \,\mu {\rm as} \left(\frac{M}{10 M_{\odot}}\right) \left(\frac{D}{1 \,{\rm kpc}}\right)^{-1}$$

Intermed. mass BH (a) Galactic Center

$$\theta_{\rm shadow} \sim 0.01 \,\mu {\rm as} \left(\frac{M}{10^4 M_{\odot}}\right) \left(\frac{D}{8 \,{\rm kpc}}\right)^{-1}$$

Supermassive BH
$$\theta_{
m shadow} \sim 1 \, \mu
m as \left(\frac{M}{10^8 M_{\odot}} \right) \left(\frac{D}{10 \, {
m Mpc}} \right)^{-1}$$

Sgr A*~ 52 uas (M=4x10⁶ M_{sun}, D=8 kpc)

M87 ~40 uas (M=6.5x10⁹ M_{sun}, D=16.7 Mpc)

 Resolving the dynamics of gas or stars inside the sphere of the gravitational influence of the target black hole

- Resolving the dynamics of gas or stars inside the sphere of the gravitational influence of the target black hole

Sgr A*: spatially & timely resolved orbit of stars (Talk by Shoko Sakai)

- Resolving the dynamics of gas or stars inside the sphere of the gravitational influence of the target black hole

Sgr A*: spatially & timely resolved orbit of stars (Talk by Shoko Sakai)

- Resolving the dynamics of gas or stars inside the sphere of the gravitational influence of the target black hole

Sgr A*: spatially & timely resolved orbit of stars (Talk by Shoko Sakai)

Stellar-dynamical measurements: spatially resolve orbits of stars

- Resolving the dynamics of gas or stars inside the sphere of the gravitational influence of the target black hole

Sgr A*: spatially & timely resolved orbit of stars (Talk by Shoko Sakai)

Stellar-dynamical measurements: spatially resolve orbits of stars

Gas-dynamical measurements: spatially resolve dynamics of gas

- VLBI observations of H₂O mega masers
- Optical spectroscopy of atomic lines
- ALMA observations of cold molecular gas (CO, HCN+, etc)

- Resolving the dynamics of gas or stars inside the sphere of the gravitational influence of the target black hole

Sgr A*: spatially & timely resolved orbit of stars (Talk by Shoko Sakai)

Stellar-dynamical measurements: spatially resolve orbits of stars

Gas-dynamical measurements: spatially resolve dynamics of gas

- VLBI observations of H₂O mega masers
- Optical spectroscopy of atomic lines
- ALMA observations of cold molecular gas (CO, HCN+, etc)

Reverberation Mapping: spatially resolve orbits of BLRs using "echo"

Nearby Super Massive Black Holes

Known uas-size SMBHs

(stellar, gas, maser, reverberation mapping)

Nearby Super Massive Black Holes

Known uas-size SMBHs

(stellar, gas, maser, reverberation mapping)

Extragalactic SMBHs with $D_{shadow} > 5$ uas (22 sources)

				<u> </u>			
Name	D	$M_{ m BH}$	$ heta_{ m shadow}^{\dagger}$	Name	D	$M_{ m BH}$	$ heta_{ m shadow}$ †
	(Mpc)	$(10^9 M_{\odot})$	(μas)		(Mpc)	$(10^9 M_{\odot})$	(μas)
M87	16.7	6.5	38.2	NGC3115	9.5	0.9	9.3
M60	16.5	4.7	28.0	IC1459	28.9	2.5	8.4
NGC1600	64.0	17.0	26.2	NGC6861	27.3	2.0	7.2
NGC4889	102.0	20.9	20.2	NGC5328	64.1	4.7	7.2
NGC1407	28.0	4.5	15.7	NGC1550	51.6	3.7	7.1
M49	17.1	2.5	14.5	NGC3091	51.2	3.6	7.0
NGC3923	20.9	2.8	13.3	M104	9.9	0.7	6.6
NGC5419	56.2	7.2	12.7	NGC1277	71.0	4.7	6.5
NGC3706	46.0	5.9	12.6	NGC3998	14.3	0.9	5.9
NGC3842	92.2	9.1	9.8	NGC5516	58.4	3.3	5.6
M63	8.7	0.8	9.4	NGC4751	26.9	1.4	5.2

[†] The expected diameter of the black hole shadow given by $5R_s$.

D_{shadow} > 1 uas: ~ 66 sources

Expected Horizon-scale Flux Density

RIAF's thermal emission $\sim M_{\rm BH} \dot{m}^{\frac{6}{5}} \nu^{\frac{2}{5}} D^{-2}$ (Mahadevan 1997)

Accretion rate would be an important factor

Expected Horizon-scale Flux Density

RIAF's thermal emission

$$\sim M_{\rm BH} \dot{m}^{\frac{6}{5}} \nu^{\frac{2}{5}} D^{-2}$$

(Mahadevan 1997)

Accretion rate would be an important factor

Shadow Diameter (uas)

Expected Horizon-scale Flux Density

Angular size of ground/space VLBI

Angular Resolution 1/u (μ as)

Example space VLBI simulations: Sombrero Galaxy

Hada, Doi et al. 2013, ApJ

Example space VLBI simulations: Sombrero Galaxy

Hada, Doi et al. 2013, ApJ

M104 (Sombrero Galaxy)

Fish, Shea & Akiyama 2019, ASR Fish, Haggard & Akiyama+ in prep.

Shadow can be reconstructed at D > ~3 uas

