TESTING GR WITH HORIZON-SCALE IMAGING

AVERY E BRODERICK

ROADMAP

Review of theoretical prejudice

- Hair, Kerr, and logic
- Deviations, why and when
- Information paradox
- The physics (semantics) of horizons
- Advocating empiricism

Imaging horizons and GR tests

- Mass estimates and circularlity
- Extracting photon rings
- Dynamical features 1-2-3
- Evidence for horizons
- Messages from the edge

IN THEORY

BLACK HOLE HAIRSTYLES IN GR

If

- Vacuum
- Stationary
- Non-pathological
- Asymptotically flat

then Kerr.

Black holes fully defined by

- 1. Mass
- 2. Angular momentum
- 3. Electric charge

Simple, unambiguous, <u>testable</u>.

PRACTICAL PROBLEMS WITH MOVING BEYOND GR

1. If a BH is Kerr, not necessarily GR.

- Brans-Dicke theory (GR + scalar) has Kerr BHs
- Lots of theories have Kerr as a solution (e.g., f(R))
- Solutions are very difficult to come by!

2. If a BH is not Kerr, not necessarily not GR.

- Light bosons? (BUT, would be mass dependent.)
- Astrophysics ...

GENERAL STATEMENTS ON SCALE: EFFECTIVE FIELD THEORY

$$S = \frac{1}{16\pi G} \int d^4x \, \sqrt{-g} \, R + \text{Einstein-Hilbert laction}$$
 High-energy deviations

"Big" deviations typical when $R{\sim}1/\lambda_2$ (natural scale for $\lambda_2{\sim}\ell_P^{-2}!!$)

BUT for BHs
$$R \sim \frac{GM}{r^3} \sim M^{-2}$$

INFORMATION PARADOX (Mathur, AMPS)

 $S = \frac{k_B A}{4\ell_P^2} \propto M^2$

Hawking radiation entangled with BH!

When $M \to M/2$, S_{BH} to small!

Quantum gravity
enters on horizon scales!

Bekenstein-Hawking entropy

SBH

Srad

KISS, 09-17-2019

WHAT IS A "HORIZON"?

What theorists care about

Event horizon

The surface that divides the region from which null geodesics escape to null infinity from that in which they do not.

<u>Teleological</u>, mathematically powerful, hard to prove.

Apparent horizon

The surface separating outward directed null geodesics that move outward and inward. Local, easy to define, less mathematically useful.

How theorists hide from data

THEORETICAL PREJUDICE VS EMPIRICISM

- Any deviation would be seen in small black holes first.
- Unless you have an event horizon, which you cannot prove.
- And deviations should be on the Planck scale anyway.
- Nothing unexpected was ever found by looking for it.
 Test" GR via precision verifications wherever possible

IN PRACTICE

First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole EHTC+ 2019

THE MASS OF M87

Assumes $16.8 \pm 0.7 \,\mathrm{Mpc}$

Dominated by systematic errors in calibration.

Exquisite agreement!

First major science result of the EHT

GENERAL RELATIVITY FROM THE HORIZON TO THE STARS

- Stellar dynamics mass!
- Needs modest changes to the inclination and/or dynamical state of the gas.
- Dynamics of both matter and light matches predictions of GR over 4 orders of magnitude.

First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole EHTC+ 2019

HYBRID MODELING/IMAGING RECONSTRUCTING THE PHOTON RING

Relative Position (M/D)

DYNAMICS 1: QUADRUPOLAR DEVIATIONS

Quasi-Kerr Metric: **Parameterized Deviation**

50

0 $\Delta RA (\mu as)$

$$g_{\mu\nu} = g_{\mu\nu}^{K} + \epsilon h_{\mu\nu}$$

$$M = M, \qquad J = aM,$$

$$Q = -a^{2}M - \epsilon M^{3}$$

Some fine print ...

- Solution to vacuum Einstein equations when $|a| \ll M$
- Adds quadrupolar perturbation (based on Hartle-Thorne metric for slowly spinning neutron stars!)
- No-hair theorems \rightarrow Quasi-Kerr metric must be sick! It is inside 2M.

DYNAMICS 1: QUADRUPOLAR DEVIATIONS

KISS, 09-17-2019

DYNAMICS 2: TOMOGRAPHY

Broderick & Loeb, 2006, MNRAS, 367

GRAVITY collaboration (2018)

DYNAMICS 2: TOMOGRAPHY

 $\begin{array}{c} [\mathrm{Jy/pixel}] \\ 0.00000\ 0.00005\ 0.00010\ 0.00015\ 0.00020\ 0.00025\ 0.00030 \end{array}$

KISS, 09-17-2019

DYNAMICS 3: LENSE-THIRRING

DYNAMICS 3: LENSE-THIRRING

$$T_{prec} \sim \frac{L_{disk}}{\tau_{LT}} \sim \frac{2}{a \sin \Theta} \left(\frac{r_o}{10^3}\right)^{5/2} \text{yr}$$

INSIDE THE PHOTON ORBIT

H.-Y. Pu & AEB (2018)

OTHER ...

- Achromatic nature of lensing features
- Very-short timescale variability about quantum BHs
- Modeling images in specific BH foils (Boson stars, naked singularities, etc.)
- Galactic center pulsars
- SMBH binaries, the final parsec problem and PTAs

DISCUSSION STARTERS

- What constitutes a "Test of GR"?
- What kinds of theoretical foils are necessary?
- Optimizing between sensitivity, coverage, and resolution?
- Monitoring duty cycles? Monitoring array size?
- Project lifetimes and long term plans?
- Multimessenger leverage over the next decade?