Event Horizon Telescope

Introduction to Black Hole Accretion

Charles F. Gammie with EHT results on behalf of the EHT Collaboration

KISS Sept 2019

Event Horizon Telescope

Four Images of a Black Hole Accretion Flow

EHTC+ 2019

- accretion flows make black holes visible
- black hole characterized by mass M and spin a (in GR!).
- accretion flow characterized by accretion rate \dot{M} and magnetic flux ϕ .

Black Hole Mass = M

Black Hole Spin = a

Accretion Rate = \dot{M}

Magnetic Flux = ϕ

Black Hole Mass = M $r_g \equiv GM/c^2$ $t_g \equiv GM/c^3$ $6 M_{\odot} \lesssim M \lesssim 10^{10} M_{\odot}$ M87: $M \simeq 6 \times 10^9 M_{\odot} (EHTC+ 2019)$ $GM/c^2 \simeq 59 AU$ $GM/c^3 \simeq 8.2 hr$

Accretion Rate = \dot{M}

Magnetic Flux = ϕ

Black Hole Spin = a

Particle Motion Near a Black Hole: Effective Potential (r, θ) $l \equiv r^{2}\dot{\theta}$ $\psi_{eff} \uparrow$ $\psi = -\frac{GM}{r}$

Particle Motion Near a Black Hole: Effective Potential

Particle Motion Near a Black Hole: Effective Potential

Photon Orbits Near a Black Hole: Effective Potential

Photon Motion Near a Black Hole: Effective Potential

Distance $\equiv D$ M87: $GM/(c^2D) \simeq 3.8 \,\mu as$

Event Horizon: $2GM/(c^2D)$ Photon Orbit: $3GM/(c^2D)$ Photon Ring: $\sqrt{27}GM/(c^2D)$

Strong gravitational lensing

projection on sky, nonspinning black hole

Black Hole Mass = M $r_g \equiv GM/c^2$ $t_g \equiv GM/c^3$ $6 M_{\odot} \leq M \leq 10^{10} M_{\odot}$ M87: $M \simeq 6 \times 10^9 M_{\odot} (EHTC+ 2019)$ $GM/c^2 \simeq 59 AU$ $GM/c^3 \simeq 8.2 hr$

Accretion Rate = M

 $L = \epsilon \dot{M}c^{2}$ $L_{Edd} \equiv 4\pi G M m_{p} c / \sigma_{T}$

M87:

 $\dot{M}_{Edd} \simeq 137 \ M_{\odot} \ yr^{-1}$ $\dot{M}/\dot{M}_{Edd} \sim 10^{-5}$ (EHTC+ 2019) Black Hole Spin = a

a \equiv J c/(GM²) -1 < a < 1 hard to measure! M87: a ≥ 0.5 models are consistent w data (EHTC+ 2019)

Magnetic Flux = ϕ

$$\Phi \equiv \int d\mathbf{A} \cdot \mathbf{B}$$

$$\Phi_{cr} \equiv (\dot{M} r_g^2 c)^{1/2}$$

cross section: black hole, magnetic field, accretion flow

Black Hole Mass = M $r_g \equiv GM/c^2$ $t_g \equiv GM/c^3$ $6 M_{\odot} \leq M \leq 10^{10} M_{\odot}$ M87: $M \simeq 6 \times 10^9 M_{\odot} (EHTC+ 2019)$ $GM/c^2 \simeq 59 AU$ $GM/c^3 \simeq 8.2 hr$

Accretion Rate = \dot{M} $L = \epsilon \dot{M}c^2$ $\dot{M}_{Edd} \equiv 4\pi G M m_p c / \sigma_T$ M87: $\dot{M}_{Edd} \simeq 137 \, M_{\odot} \, yr^{-1}$ $\dot{M} / \dot{M}_{Edd} \sim 10^{-5}$ (EHTC+ 2019) hard to measure!
M87: a ≥ 0.5 models are consistent w data (EHTC+ 2019)
Magnetic Flux = Φ

Black Hole Spin = a

 $a \equiv J c/(GM^2)$

-1 < a < 1

 $\Phi_{cr} \equiv (\dot{M}r_g^2 c)^{1/2}$

SANE: $\Phi/\Phi_{cr} \lesssim 15$ MAD: $\Phi/\Phi_{cr} \simeq 15$ (Igumenshchev+ 2003)

M87: ?

Accretion Flow Models

EHTC+ 2019

Accretion Flow Dynamical Model

color shows rest-mass density

Wong, Prather, CG

a = 0.94; $\dot{M}/\dot{M}_{Edd} \ll$ 1 (nonradiative); MAD

General Relativistic Magnetohydrodynamics Models

Covariant, magnetized fluid model for accreting plasma 3D, time dependent Kerr-Schild coordinates: inner boundary inside horizon Captures turbulent fluctuations Codes (harm, koral, bhac, ...) consistent (Porth+ 2019)

Inside the sausage factory:

ILES = no explicit dissipation (viscosity, resisitivity, heat conduction) Plasma is *collisionless* Initial conditions are artificial Radiation not included Pair production physics not included

Blandford-Znajek Effect

Black hole free energy associated with |a| > 0 (Penrose 1969)
Extractable via magnetic fields (Blandford & Znajek 1977)
Analogous stellar spin-down by magnetized wind
Collimated, pulsar-like wind:

$$L_{BZ} \sim a^2 \ 4\pi r_g^2 \ B^2 \ c$$

Use magnetic flux to link to M (e.g. Tchekhovskoy+ 2011),

$$L_{BZ} \simeq 0.01 \ a^2 \ \left(\frac{\Phi}{\Phi_{cr}}\right)^2 \dot{M}c^2$$

GRMHD models show BZ-like jet for |a| > 0

$+\,0.0~\mathrm{days}$

M87 model M = 6.5 x 10⁹ M_☉ a = 0.94 M ~ 10⁻⁵ M_{Edd} MAD

synchrotron emission

Radiative Transfer Models

Covariant, polarized radiative transfer model Codes (ipole, bhoss, grtrans, ...) convergent (Gold+ 2019) Electron distribution function \Rightarrow transfer coefficients

Inside the sausage factory:

Post-processing step (radiation not included in evolution) electron distribution function *assumed* Fast light approximation

Main Points

- Accretion flows make black holes visible
- Four key parameters: M, a, \dot{M} , ϕ/ϕ_{cr}
- Strong gravitational lensing related to photon orbit produces photon ring
- General relativistic magnetohydrodynamics (GRMHD) models produce jets powered by Blandford-Znajek process
- GRMHD models + radiative transfer reproduce Event Horizon Telescope observations of M87