KISS: Extracting Science from Black Hole Images

Dana Simard Lightning Talk: Interstellar Scattering September, 2019

What is interstellar scattering?
Why is it a problem?
What can we do about it?
What about Sgr A* in particular?

Interstellar scattering

Haggard & Bower 2016 Sky & Telescope

Why is it a problem?

Masks spatial information

Johnson+2016

Interstellar scattering

Haggard & Bower 2016 Sky & Telescope

Interstellar scattering

Haggard & Bower 2016 Sky & Telescope

Highly anisotropic scattering @ thin screens (Stinebring+ 2001; Walker+ 2004; Putney+ 2006; Cordes+ 2006; Brisken+ 2010; many others)

Highly anisotropic scattering @ thin screens (Stinebring+ 2001; Walker+ 2004; Putney+ 2006; Cordes+ 2006; Brisken+ 2010; many others)

(As far as we can tell) plasma changing on >1 month timescales and shorter variation due to relative motion only. (Hill+ 2005; Simard+ in prep.)

PSR B0834+06

Highly anisotropic scattering @ thin screens (Stinebring+ 2001; Walker+ 2004; Putney+ 2006; Cordes+ 2006; Brisken+ 2010; many others)

(As far as we can tell) plasma changing on >1 month timescales and shorter variation due to relative motion only (Hill+ 2005) + achromatic to 1st order (Brisken+ 2010) PSR B0834+06 (Simard+ in prep.)

Statistics of scattering constant over decades

- Used to map density structure in ISM (e.g. Cordes & Lazio 2001)
- Specific screens live for at least decades (Stinebring)

- Scattering may be entirely due to refraction
- Models still in two classes:
 - Filamentary (e.g. Romani+ 1987;
 Gwinn 2019; Gwinn & Sosenko 2019)
 - Sheets (e.g. Romani+ 1987; Walker & Wardle 1987; Walker 2007; Walker+ 2017; Goldreich & Sridhar 2006; Pen & Levin 2014; Simard & Pen 2018)

Models of scattering

- 1. Scattering dominated by thin screens: Distance to the screen
- 2. Scattering anisotropic: Size, axis ratio, orientation of scattered disk
- 3. Substructure in scattered image: Fluctuations in phase screen

Scattering and Time Variability of Sgr A*

Slide courtesy of Michael Johnson

Simulation of Sgr A* from George Wong

Interstellar Scattering of Sgr A*

Interstellar scattering affects the image size, asymmetry, and substructure for Sgr A*

"All the interferometer observations [of Sgr A*] are consistent with the measured diameters being the result of interstellar scattering. This source has the largest interstellar broadening of any known source."

- Davies, Walsh, and Booth (1976)

The Radio Strehl Ratio

How important is scattering mitigation for the EHT?

instrument's resolution with scattering as a fraction of the resolution without scattering

Effects of Scattering on Images

Two Branches of Interstellar Scattering

1. Blurring ("diffractive"):

- Stable over time
- Reduces signal on long baselines
- Decreases brightness temperature
- Weaker at higher frequencies

2. Substructure ("refractive"):

- Stochastic and time-variable
- Adds new "signal" on long baselines
- Stronger at higher frequencies
- Unexpectedly strong effect on VLBI! (Narayan & Goodman 1989; Johnson & Gwinn 2015)

A Simplified Scattering Framework

Scattering is most commonly described by turbulence governed by a single, unbroken power law

However, we can decouple the scattering into two dominant regimes (Blandford & Narayan 1985)

- Small-scale ("diffractive") fluctuations can be replaced by their ensemble-average
- Large-scale ("refractive") phase fluctuations can be treated as stochastic

Johnson & Narayan (2016) Johnson (2016)

Refractive Substructure

Example: Sgr A* at 1.3cm

Refractive Substructure

Expected refractive noise at 1.3mm (for a Gaussian source)

One Mitigation Strategy: Model the Screen

The screen is ~constant even as the source evolves.

Need to model modes from the ~source size to the ~beam size

Total required modes could be ~10-100

Ideal: Marginalize over these degrees of freedom

Models of scattering

- Scattering dominated by thin screens: Distance to the screen
- 2. Scattering anisotropic: Size, axis ratio, orientation of scattered disk
- 3. Substructure in scattered image: Fluctuations in phase screen

Sgr A* @ 86 GHz; Issaoun+ 2019

