
Carbon Cycle:
What do we know?

What else do we want to know?

Inez Fung
UC Berkeley

February 28 2010



Continuous Carbon Cycling

• Fluxes PgC/yr

• Inventory PgC

• Turnover time
=
Inventory/Flux

• Atm  CO2 --> inventory

• Land:  turnover time 101-102 yrs.  Ocean:  turnover time 102-103 yrs

• Difficult (time consuming and expensive) to measure changes in land
and ocean inventories.   Focus on fluxes



Atm CO2 measurements at Mauna Loa Obs



What We’ve got: The data:  Atm CO2 (for now)

Discrete surface
flasks (~weekly)

Continuous
surface (hourly)
observatories
Tall towers
continuous
(hourly)

Aircraft
profiles
(~weekly)



CO2 mixing times in atm:
~2 wks around lat circle
~3 mo within hemisphere
~1 yr bet’ hemispheres

•   NOAA-ESRL
•   ~ 100 sites at remote

marine locations,  bi-weekly
flasks, 2m

•   Long-term increase
•   Seasonal cycle
•   N-S gradient



PROBLEMS: Missing Sinks and Missing Sources
• Only half of the CO2

produced by human
activities is remaining in
the atmosphere

• How well do we know the
sources?

• Where are the sinks that
are absorbing over 40%
of the CO2 that we emit?
– Land or ocean?
– Eurasia/North

America?
• Why does CO2 buildup

vary dramatically with
nearly uniform
emissions?

• How will CO2 sinks
respond to climate
change?



Rule: Conservation of Carbon
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Separate out background (pre-industrial) from the
perturbation (last 200 years) carbon cycle:

“Steady State”:



Units:  1 Pg = 1 Gt = 1015 gram
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“Known” and/or Observed

• Sources: fossil fuel emission
• Atmospheric CO2
• Land carbon; incl deforestation
• Ocean carbon



Conservation of Perturbation Carbon in Atm
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• Liquids (~36%)
• Solids (~35%)
• Gas (~20%)
• Cement production (~3%)
• Flaring at wells (<1%)
• Bunker fuels (~4%)
• Others (<1%)

1750 2010

CO2 Emission Growth Rate:

•1990-1999:  1.1% per year

•2000-2004:  >3% per year

CO2 Emission from Fossil Fuel Combustion &
Industrial Processes
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   USA

   China

   EU

Shifting Emission Sources

1751-
2004

2004 20042000-
2004

• USA and EU
contributed >50%
of cumulative CO2
emission since
1751

• China leads recent
growth in
emissions

• 2004:  China
emissions close to
US emissions



Fossil Fuel CO2 Emissions

1994-1997 2001-2004

6.6 PgC/yr 7.5 PgC/yr



CO2 is a long-distance
traveller in the
atmosphere

•   NOAA-ESRL
•   ~ 100 sites at remote

marine locations,  bi-weekly
flasks, 2m

•   Long-term increase
•   Seasonal cycle
•   N-S gradient



Atm CO2 Obs:  (1)  Time series at stations
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Mixing time between
hemispheres ~ 1 year:

N-S gradient increases
as FF emission (~NH
source) increases



Atmospheric CO2 Signature of Ecosystem C
Exchange:  Seasonal Cycle

Mauna Loa, Hawaii Pt. Barrow, Alaska

6.5 ppmv 16 ppmv

Source:
NOAA/CMDL

•Mixing time within a hemisphere ~ 3 months
•MLO seasonal cycle integrates NH vegetation dynamics    
•Amplitude of atmospheric CO2 seasonal cycle increases poleward: 
telecoping of growing season and greater asynchroneity bet’ fluxes

•  Growing season net flux ~15-20% of annual NPP 



Calm night:
stably stratified
boundary layer

Well-mixed
PBL

(2) Tall Towers: Diurnal CO2 is highly variable
in boundary layer (<500m)

•Local vertical mixing time- ~ minutes to hours
•Diurnal cycle of photosynthesis and respiration

 > 60 ppmv (20%) diurnal cycle near surface
•Varying heights of the planetary boundary layer (varying mixing
volumes)



COBRA 2000(3a) Occasional Aircraft Campaigns
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(3b) “Regular” Aircraft Monitoring: Vertical
Profiles (free troposphere)



Conservation of Perturbation Carbon in Atm
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Terrestrial Carbon Cycle

• Growth, mortality,
decay

• GPP:  Gross Primary
Productivity  (climate,
CO2, soil H2O, resource
limitation)

• Ra:  Autotrophic
respiration (T, live
mass,…)

• Rh:  Heterotrophic
respiration:  Decay (T,
soil H2O,..)

• NPP=GPP-Ra

120 PgC/yr 60 60

1200 PgC

800 PgC

GPP Ra Rh



Impact on Atmospheric CO2

Photosynthesis

Respiration
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•   Seasonal asynchrony
between photosynthesis and
decomposition

  net fluxes of CO2 to and
from atm
  seasonal cycle of CO2 in
atm

•  Annual imbalance  carbon
source/sink



(1) History of Ecological Measurements

Veg Type(x,y)
 annual
mean NPP(x,y)



August 2000

February 2001

 Seasonality
of NPP

Seasonality of
Respiration not
well-defined

Net flux not
well-defined at
every location

(2) Satellite Greenness index:  NDVI



Tough to estimate
• deforested area
• Carbon inventory before

deforestation
• Fate of removed carbon
• Fate of litter and soil carbon
Tough to discriminate atm

CO2 signature

(3) Satellite
Obs

Deforestation



FluxNet Towers

Vertical CO2 flux:  vertical velocity (w), CO2 (c )

! 

wc = (w + " w )(c + " c )

! 

= w c + " w c + w " c + " w " c 

! 

wc = w c + " w " c 

(3) Network of (not very tall) CO2 Flux Towers

At top of canopy



(4) Forest Inventory Analysis:
Slow Process Observations

• Plot-scale measurement of carbon storage, age structure, growth rates:
170,000 plots in US!

• Allows assessment of decadal trends in carbon storage



Conservation of Perturbation Carbon in Atm
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DIC  =  CO2
*  +  HCO3

-  +  CO3
=

                        
                   1-2 %     80-90%

CO2

DIC, NO3
depth

atm

remineralizatio
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photosyn
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Ocean C from the Atm’s Perspective:



Marine
Productivity -
redistributes

DIC(z)
Productivity is possible
when upwelling brings:

•Nutrients from below
to euphotic zone
•Cold water

Small Flux, small inventory
of organic C
But alters DIC(z)



(1a) Time series:
Hawaii (ALOHA) and

Bermuda (BATS)

Surface ocean pCO2
increasing; follows the
atmospheric record at Mauna
Loa

pH has decreased by 0.04 in
20 years - carbonate more
soluble

Carbonate ion decreasing:
Tougher to precipitate

MLO



Chavez et al.

Moorings/drifters (ΔpCO2, pH, DIC, NO3) 
(1b) Time Series:  Buoys

Air-sea difference in pCO2
is highly variable:

>100 µatm



(2) Research Cruises + Ships of Opportunity:
Air sea difference in pCO2

Jan-Mar Obs

Jul-Sept Obs

No. Months with
At least One Obs

0 12



(2) Air-Sea Fluxes of CO2
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-Global baseline (hydrography, transient tracers,
nutrients, carbonate system)
-Improved analytical techniques for inorganic carbon
and alkalinity (±1-3 µmol/kg or 0.05 to 0.15%)
-Certified Reference Materials
-Data management, quality control, & public data access

(3)  International Research Campaigns:
JGOFS/WOCE global survey (1980s and 1990s)



Biology and DIC:
•Depletion near sfc
•Enrichment at 
Depth

Latitude   N

D
ep

th

Atlantic Pacific

Conveyor Belt Transport of
DIC:
•Southward in Atlantic
•Northward in Pacific

Ocn currents ~ cm/s
Time scale ~ 103 yr

(3) Campaigns:
Total Dissolved Inorganic Carbon (DIC)



(3)  Campaigns: Penetration of Anthropogenic
Carbon into Ocean Interior

Sabine et al. 2004



(4)
Autonomous

Platforms:
Profiling Floats

--> Biology



SUMMARY
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FF: mainly NH, relatively aseasonal

LandUse:  mainly source tropics, sink in mid-latitudes

Ocean:  outgassing in equatorial oceans, absorption
at mid-hi latitudes (in summer. Not sure about winter)

Vegetation and soils:  annual mean fluxes~0 locally,
fluxes have large diurnal (~100 ppmv) and seasonal
ranges (~30 ppmv)



How to harmonize the diverse data?

• Spatial scales
• Observing frequency
• Observing periods - varying

meteorology and climate variability
• Incomplete suite - e.g. respiration



Atm Carbon Models
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An Atm Carbon
Cycle Model

What we’ve got:
• Sources/Sinks S known approximately or not well

constrained
• Cobs (actually mixing ratios Xobs) biweekly, at ~100 stations

near the surface
• “Decent” transport model (winds, turbulent mixing)
What we want:
• Where has the fossil fuel CO2 gone?  {Better estimates of

the magnitude and distribution of S (e.g. land exchange)}
• How did the fossil fuel CO2 get there? {improved

understanding and representation of processes, e.g.
• Fab=LUE*AvailableLight; Fba=exp(αT);

• Protocol verification:  What are the strengths of
local/regional emissions and sinks?
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Eq NPSP

4 5 6 7
8

Latitude
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 (m
b)

Zonal
mean

Surface

What weWhat we’’ve got: (1) The Model:  NCAR climate modelve got: (1) The Model:  NCAR climate model

Source:  Source:  Fossil fuel combustionFossil fuel combustion
(6 (6 PgC/yPgC/y))

C(x,y,z) at steady state



What We’ve got (2): The data:  Atm CO2 (for now)

Discrete surface
flasks (~weekly)

Continuous
surface (hourly)
observatories
Tall towers
continuous
(hourly)

Aircraft
profiles
(~weekly)



Difficult to maintain
an international
monitoring network



What We’ve Got: (3) The Flux Priors
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Example I: A Simpler Model - reduce 3D atm
to 2 hemisphere



Example I:  Interhemispheric Mixing:
Two-Box Model, everything is perfect.
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CFC, with Ss=0):  ~1-2 years



Example 1:  Interhemispheric Mixing:
Two-Box Model, everything is perfect.
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Ex I: 2-Box Model Applied to the Carbon Cycle
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Ex I: 2-Box Model Applied to the Carbon Cycle
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Ex I: 2-Box Model Applied to the Carbon Cycle
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Where are the Carbon Sinks?
N S

N S

N S
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Northern sinks > Southern Sinks !!!!!!!

“Data/Obs”: Huge C
sink in the large
expanse of southern
ocean; but large
uncertainty in obs

N ocn “better observed”  large Northern land sink!!!



• Premise: Atm CO2 = linear combination of
response to each source or sink

1.0 Divide surface into “basis regions”

Example II:  Perfect 3D atm circulation model.
Steady state

(1)  Forward Step

    

! 

) 
s k (x, y)

1.1:  Specify unitary source (e.g.
1 PgC/year) each year from each
region

    

! 

) 
s k ( x, y)

transport model
" # " " " " 

) 
c k (x, y, z,t )1.2:  Simulate atm CO2

“basis” response with atm
general circulation model
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# $
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1.3 Reconstruct fluxes and
concentrations:  unknown
source strength µk



Ex II:  (Step 2)  Bayesian Inversion:  perfect
circulation model

•Obs. Network –
–mainly remote marine locations

Trying to infer information over land
Undetermined; non-unique solutions; prior estimates of
source/sinks as additional constraints

Inversion:  Seek the optimal
source/sink combination {µk} to
match atmospheric CO2 data:
minimize

  

! 
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[Cobs(stn) " µk #
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Ex IIa: Posterior from
many “perfect”

circulation models

Gurney et al. Nature 2005

µk
prior±σk

prior

{µmk
posterior±σmk

posterior}
Model m:

X Mean,std_dev (µmk
posterior)

Mean (σmk
posterior )

Little innovation in tropics, Africa
Great innovation in S. Ocean



Separate atm and oceanic inferences of
air-sea CO2 flux



Variation 1:  monthly and interannual
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Each region k: Pulse release into atm --> concentration for
24 months

Concentration at any time is the cumulative result of
emission over the past 24 months

Find µk(t) that minimize J:



Combine global surface
network, transport models
& linear inverse to resolve
surface CO2 fluxes at
regional & monthly scales

Flux Uncertainty g C/m2/y

Expanded
Network

~ Current

Miller et al. J. Geophys. Res. 2007

Inferred Surface Fluxes



Variations 2:  don’t like regions and/or prior
flux pattern for each region

• Ignore flux strength priors in
cost function --> non-unique
mathematical solution may not
be physically realistic (e.g. Fan
et al.)
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" }

Still rely on some
transport model to
estimate C_model

• Solve for source strength for
each grid box (Kaminiski et al.):
unconstrained

• Geostatics:  estimate flux
correlation lengths (Rodenbeck,
Michalak et al)



Inversions using Satellite CO2:
gaps in space and time

• Old-fashioned inversion (tracer model, min cost
function J) for surface fluxes (source strengths for K
regions) as before (Rayner and O’Brien):

cobs(stn,t) --> csat(xoverpass,yoverpass,toverpass)

• 2-step:  (1) Assimilate AIRS radiance at top of atm into
weather prediction model --> full 4D CO2(x,y,z,t) (Engelen

et al. 2009).  (2) old fashioned inversion for surface fluxes
(Chevallier et al. 2009)

• Estimation of C_model (transport model) and min(J)
uncoupled



• Time-dependent inversion - {Kalman filter}
 At time tn:
– Find CO2analysis(tn)  by min(J):  J includes flux

parameters(regions), CO2obs(tn), CO2forecast(tn)

– update surface fluxes µ for regions

– model: update CO2forecast(tn+1) (e.g. CarbonTracker)

• Variational Approach - Find µ that minimizes J.
Use adjoint model (CO2(tn-1)) to efficiently
calculate  ∂J/ ∂µ (e.g. Baker)

CO2 Data Assimilation:
2 General Classes



Challenge:  Transport Model

• Transport model needed to connect surface fluxes to CO2

• NCEP/ECMWF analysis --> “best approx” to real atm circulation
every 3 or 6 hours.

• NCEP/ECMWF Reanalysis:  retrospective assimilation of all
weather data using the same general circulation model (uniform
model physics through time). Treated as “known”, with zero
uncertainty.

• NCEP/ECMWF Reanalysis:  average of large ensemble of atm
circulations; the average circulation is never realized.  Yields T
and humidity profiles after mixing, and transport model needs to
reconstruct convective mixing. Spread of circulation ensemble
not utilized



Assimilation of CO2+meteorology

Following numerical prediction prediction:
Every 6 hours:

Assimilate raw weather observations
(u,v,T,q,Ps) + AIRS CO2

CO2(x,y,z,t)
Estimate surface flux from conservation

equation (e.g. estimate evaporation from
the full 4D water vapor field)




