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Carbon Inventories of Reservoirs that Naturally
Exchange Carbon on Time Scales of Decades to Centuries

Ocean Anth.
C=0.35% moe Soil=2300 PgC

Plants=650 PgC

Ocean
38,136 PgC

Oceans contain ~90% of carbon in this 4 component system

anthropogenic component is difficult to defect




Global Carbon Budget for 2000-2005
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Takahashi climatological annual mean air-sea
CO, flux for reference year' 2000
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Global flux is 1.4 +0.7 Pg C/yr

Takahashi et al., Deep Sea Res. II, 2009



Surface CO, observation network
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Global Surface CO, observations by year

10000000

A
1000000
0 The number of annual
2 100000 measurements has
S 10000 been increasing
E% 1000 ﬁAvv exponentially since
52 100 for the last 50 years
gv
= 10 p . .
g A focus on studying
& gczaf) carnor in iz
T 19903 lzd to 112
2 lngredmzerring of
5 (e 111982 rzgzepe
25 10 I
28 SHIPS
35S °
EX 6 The dramatic
3 o .
s, increases in the
s 2000s can be
< .
. attributed to the
1

95 1970 1975 1980 1983 1990 1995 2000 2005 2010 instrumenting of
ear . .
Based on SOCAT version 1 Jan. 2010 From Sabine et al., 2010 commercial ships




New Technologies can Help Expand the
Surface CO, Observation Network

One Example: Integrated
MapCO,/Wave Glider system
under development




Producing Seasonal CO, Flux Maps
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Global Flux Map suggests an interannual variability of 0.23 Pg C
Year: 1982 Season: 1

mol/m Ifse:asi:m
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Produced by Joaquin Trinanes, NOAA Coastwatch, and
Rik Wanninkhof, NOAA/AOML/'OCD

Climatology: Takahashi et al 2002
Method: Lee et al, 1998, Park et al, 2006; Cosca et al. 2003

Surface observations have large variability over a wide range of fime and

space scales making it very difficult to properly isolate the anthropogenic
increases. Uptake of 2 Pg C yr! only requires a ApCO, of 8ppm.




Several Independent Approaches are Converging on an Estimate
of the Anthropogenic CO, Uptake

Table 1. Summary of Recent Estimates of the Oceanic Uptake Rate of Anthropogenic CO ,for the Period of the 1990s and Early 2000s

Method Estimate (Pg C a™ %) Time Period Authors
Estimates Based on Oceanic Observations
Ocean Inversion (10 models) —22%03 Nominal 1995 this study and Mikaloff - Fletcher et al. [2006]
Ocean Inversion (3 models) -18+04 Nominal 1990 Gloor et al. [2003]
Air-sea pCO,difference (adjusted)® -19+07 Nominal 2000° Takahashi et al. [2008]
Air-sea pCO,difference (adjustedf* —-2.0 + 60% Nominal 1995 Takahashi et al. [2002]
Estimates Based on Atmospheric Observations
Atmospheric O,/N, ratio -19+06 1990-1999 Manning and Keeling [2006]
Atmospheric O,/N, ratio —22%06 1993-2003 Manning and Keeling [2006]
Atmospheric O,/N, ratio -17x+05 1993-2002 Bender et al. [2005]
Atmospheric CO,inversions (adjusted) ® -18+10 1992-1996 Gurney et al. [2004]
Estimates Based on Oceanic and Atmospheric Observations
Air-sea™C disequilibrium -15+09 1985-1995 Gruber and Keeling [2001]
Deconvolution of atm. §"°C and CO, -20x08 1985-1995 Joos et al. [1999]
Joint atmosphere-ocean inversion -21+02 1992-1996 Jacobson et al. [2007b]
Estimates Based on Ocean Biogeochemistry Models
OCMIP-2 (13 models) -24+05 1990-1999 Watson and Orr [2003]
OCMIP-2 (4 “best” models)’ -2210.2 1990-1999 Matsumoto et al. [2004]

® Adjusted by 0.45 Pg C a *to account for the outgassing of natural CO,that is driven by the carbon input by rivers.

®The estimate for a nominal year of 1995 would be less than 0.1 Pg C a *smaller.

¢ Corrected for wrong windspeeds used in published version; see http://www.ldeo.columbia.edu/res/pi/CO2/carbondioxide/pages/air_sea flux_revl.html.
These models were selected on the basis of their ability to simulate correctly, within the uncertainty of the data, the observed oceanic inventories and

regional distributions of chlorofluorocarbon and bomb radiocarbon.

From Gruber et al., Glob. Biogeochem. Cy., V 23, doi:10.1029/2008GB003349, 2009




Global Carbon Budget for 2000-2005
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An example of

the differences
between uptake
and storage can
be found in the
Tropical Pacific
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Column inventory of anthropogenic CO, that has accumulated in the
ocean between 1800 and 1994 (mol m-2) based on AC* approach

Mapped Inventory =106£17 Pg C; Global Inventory =118+19 Pg C



Shipboard Sampling for Ocean Carbon
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GEOSECS Station Locations

Vo=

Much of our understanding of the modern ocean carbon cycle was
based on the GEOSECS program of the 1970s.

6,037 carbon samples with a DIC uncertainty ~ 20 umol kg



GEOSECS: the first global, documented, high precision ocean
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measurements that are more
accurate by an order of
maghitude can be made, at
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In the early 1990s the World Ocean Circulation Experiment (WOCE), the
Joint Global Ocean Flux Study (JGOFS), and the NOAA/OACES program
joined forces to conduct a global survey of CO, in the oceans.

40°E 120°E 160°W 80°W 0°

Improved accuracy a’rTrlbu’red to:

1. Refinement of coulometric DIC and SOMMA
by K. Johnson

2. Developmen’r of CRMs by A. Dickson

40°E 120°E 160°W 80°W 0°

>70,000 sample locations; DIC + 2 mol kg!; TA + 4 pmol kg

http://cdiac.esd.ornl.gov/oceans/glodap/Glodap home.htm



It was almost 20 years later before an improved anthropogenic
CO, technique developed
. | . | .
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Global Interior Ocean Carbon
Observations by Year
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Moving beyond total carbon inventories...
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Comparison of the Change in Anthropogenic C Inventory over
two decadal periods

Anthropogenic carbon inventory increases were higher at all latitudes over
the last decade than the average increases between GEOSECS and WOCE
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Individual assessments of decadal carbon changes all show increases
the pa‘r’rerns of change are complicated

Interim Resul'rs Have Shown
-| 1. On decadal scales, changes in ocean circulation can
have a significant and sometimes dominant impact
on carbon inventory changes.

2. The decadal patterns of anthropogenic carbon
storage do not necessarily follow the long ferm
storage pattern.
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I believe we are in a situation similar to the model evolution
proposed by Corinne LeQuere a few years back
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I believe we are in a situation similar to the model evolution
proposed by Corinne LeQuere a few years back
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Figure 2 Anthropogenic carbon uptake rate from 1765 to 2008 (black
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Feedbacks
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All Buffer Factors show a minimum where DIC=Alk
Buffer factors at Alk = 2.25 mM
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Proportion of the concentrations
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Higher buffer factor means larger DIC
increase for the same amount of CO, rise

Y DIC (nmol/kg)

Preindustrial

Ul{} | 1 1 1 1 1 1 1 1 1 1
0 I 2 3 + 3 6 7 8 9 10 11 12

ADIC for 10patm fCO, increase




Higher buffer factor means larger DIC
increase for the same amount of CO, rise
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Higher buffer factor means larger DIC
increase for the same amount of CO, rise
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Higher buffer factor means larger DIC
increase for the same amount of CO, rise
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Global Carbon Budget for 2000-2005
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Summary and Challenges

-Surface ocean observations and modeling are increasing and improving
our ability to constrain the air-sea fluxes (uptake)

*This is still being done in an ad hoc manner and we will not be able to
reach needed accuracy without better coordination and embracing new
technologies

- Ocean interior measurements and modeling (inventories) compliment the
uptake estimates and provide information on feedbacks

* These observations are personnel and infrastructure intensive thus
they are not well supported with their current funding through research

- Coastal exchanges are not well understood

* Currently there is no coordinated effort to
improve our understanding

- The above observing systems may also be able
to address verification of ocean carbon
capture and storage approaches

' Q\?\\\\.\ M

W

* However, the current programs are not
optimized for this.
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