

Quantifying Sources & Sinks of Atmospheric CO₂

Uptake and Storage of Anthropogenic Carbon

Christopher L. Sabine ; NOAA/PMEL, Seattle, WA USA

by

Acknowledgements: Richard A. Feely (PMEL), Frank Millero (RSMAS), Andrew Dickson (SIO), Rik Wanninkhof (RSMAS), Toste Tanhua (IFM-geomar), Taro Takahashi (LDEO), Niki Gruber (ETH Zürich)

OUTLINE

- 1. Briefly review how observations contribute to Carbon uptake estimates
- 2. Describe how we determine ocean carbon inventories
- 3. Consider issues for understanding future ocean carbon uptake and storage
- 4. Suggest an approach for where we go from here

Carbon Inventories of Reservoirs that Naturally Exchange Carbon on Time Scales of Decades to Centuries

Oceans contain ~90% of carbon in this 4 component system
anthropogenic component is difficult to detect

Global Carbon Budget for 2000-2005

Takahashi climatological annual mean air-sea CO_2 flux for reference year 2000

0" 20" 40" 60" 80" 100" 120" 140" 160" 180" 160" 140" 120" 100" 80" 60" 40" 20" 0"

Based on ~3 million measurements since 1970 and NCEP/DOE/AMIP II reanalysis. Global flux is 1.4 ±0.7 Pg C/yr

Takahashi et al., Deep Sea Res. II, 2009

Surface CO₂ observation network

Global Surface CO₂ observations by year

The number of annual measurements has been increasing exponentially since for the last 50 years

A focus on studying ocean carbon in the 1990s led to the instrumenting of many more research ships

The dramatic increases in the 2000s can be attributed to the instrumenting of commercial ships

New Technologies can Help Expand the Surface CO₂ Observation Network

One Example: Integrated MapCO₂/Wave Glider system under development

Producing Seasonal CO₂ Flux Maps

Global Flux Map suggests an interannual variability of 0.23 Pg C

Surface observations have large variability over a wide range of time and space scales making it very difficult to properly isolate the anthropogenic increases. Uptake of 2 Pg C yr⁻¹ only requires a $\triangle pCO_2$ of 8ppm.

Several Independent Approaches are Converging on an Estimate of the Anthropogenic CO₂ Uptake

Method	Estimate (Pg C a^{-1})	Time Period	Authors
	Estimates Based on	Oceanic Observations	
Ocean Inversion (10 models)	-2.2 ± 0.3	Nominal 1995	this study and Mikaloff - Fletcher et al. [2006
Ocean Inversion (3 models)	-1.8 ± 0.4	Nominal 1990	Gloor et al. [2003]
Air-sea pCO ₂ difference (adjusted) ^a	-1.9 ± 0.7	Nominal 2000 ^b	Takahashi et al. [2008]
Air-sea pCO_2 difference (adjusted) ^{a,c}	$-2.0 \pm 60\%$	Nominal 1995	Takahashi et al. [2002]
	Estimates Based on At	tmospheric Observations	
Atmospheric O_2/N_2 ratio	-1.9 ± 0.6	1990-1999	Manning and Keeling [2006]
Atmospheric O_2/N_2 ratio	-2.2 ± 0.6	1993-2003	Manning and Keeling [2006]
Atmospheric O_2/N_2 ratio	-1.7 ± 0.5	1993-2002	Bender et al. [2005]
Atmospheric CO ₂ inversions (adjusted) ^a	-1.8 ± 1.0	1992–1996	Gurney et al. [2004]
	Estimates Based on Oceanic	and Atmospheric Observ	ations
Air-sea ¹³ C disequilibrium	-1.5 ± 0.9	1985-1995	Gruber and Keeling [2001]
Deconvolution of atm. δ^{13} C and CO ₂	-2.0 ± 0.8	1985-1995	Joos et al. [1999a]
Joint atmosphere-ocean inversion	-2.1 ± 0.2	1992–1996	Jacobson et al. [2007b]
	Estimates Based on Ocea	n Biogeochemistry Mode	els
OCMIP-2 (13 models)	-2.4 ± 0.5	1990–1999	Watson and Orr [2003]
OCMIP-2 (4 "best" models) ^{d}	-2.2 ± 0.2	1990-1999	Matsumoto et al. [2004]

Table 1. Summary of Recent Estimates of the Oceanic Uptake Rate of Anthropogenic CO₂ for the Period of the 1990s and Early 2000s

^aAdjusted by 0.45 Pg C a⁻¹ to account for the outgassing of natural CO₂ that is driven by the carbon input by rivers.

^bThe estimate for a nominal year of 1995 would be less than 0.1 Pg C a⁻¹smaller.

^c Corrected for wrong windspeeds used in published version; see http://www.ldeo.columbia.edu/res/pi/CO2/carbondioxide/pages/air_sea_flux_r ev1.html. ^d These models were selected on the basis of their ability to simulate correctly, within the uncertainty of the data, the observed oceanic inventories and regional distributions of chlorofluorocarbon and bomb radiocarbon.

From Gruber et al., Glob. Biogeochem. Cy., V 23, doi:10.1029/2008GB003349, 2009

Global Carbon Budget for 2000-2005

Column inventory of anthropogenic CO_2 that has accumulated in the ocean between 1800 and 1994 (mol m⁻²) based on ΔC^* approach

Mapped Inventory =106±17 Pg C; Global Inventory =118±19 Pg C

Shipboard Sampling for Ocean Carbon

GEOSECS Station Locations

Much of our understanding of the modern ocean carbon cycle was based on the GEOSECS program of the 1970s.

6,037 carbon samples with a DIC uncertainty ~ 20 μ mol kg⁻¹

In the early 1990s the World Ocean Circulation Experiment (WOCE), the Joint Global Ocean Flux Study (JGOFS), and the NOAA/OACES program joined forces to conduct a global survey of CO_2 in the oceans.

>70,000 sample locations; DIC \pm 2 μ mol kg⁻¹; TA \pm 4 μ mol kg⁻¹

http://cdiac.esd.ornl.gov/oceans/glodap/Glodap_home.htm

Global Interior Ocean Carbon Observations by Year

The WOCE/JGOFS period resulted in an unprecedented number of annual observations.

The CLIVAR/CO₂ program is making observations at 1/3 to 1/2 of the WOCE/JGOFS rate.

Moving beyond total carbon inventories...

Comparison of the Change in Anthropogenic C Inventory over two decadal periods

Anthropogenic carbon inventory increases were higher at all latitudes over the last decade than the average increases between GEOSECS and WOCE

The GEOSECS-WOCE changes were re-evaluated using the exact same techniques used for the WOCE-CLIVAR changes for these calculations.

Individual assessments of decadal carbon changes all show increases the patterns of change are complicated

I believe we are in a situation similar to the model evolution proposed by Corinne LeQuere a few years back

I believe we are in a situation similar to the model evolution proposed by Corinne LeQuere a few years back

solid line). The shaded area represents the error envelope (see Fig. 1 legend). Also shown are the decadal average uptake rates adopted by the IPCC fourthassessment report (AR4)⁴ (blue circles; vertical error bars are 6 1 s.d. and horizontal error bars span the averaging period of years) and the atmospheric CO₂ mixing ratio²⁹ used for the inversion (red dashed line).

Feedbacks

 $CO_{2(aq)} + H_2O + CO_3^{2-} \leftrightarrow 2HCO_3^{-}$ $CO_{2(aq)} + H_2O \leftrightarrow HCO_3^{-} + H^+$

Global Carbon Budget for 2000-2005

Summary and Challenges

- -Surface ocean observations and modeling are increasing and improving our ability to constrain the air-sea fluxes (uptake)
- *This is still being done in an ad hoc manner and we will not be able to reach needed accuracy without better coordination and embracing new technologies
- Ocean interior measurements and modeling (inventories) compliment the uptake estimates and provide information on feedbacks
- * These observations are personnel and infrastructure intensive thus they are not well supported with their current funding through research
- Coastal exchanges are not well understood
- * Currently there is no coordinated effort to improve our understanding
- The above observing systems may also be able to address verification of ocean carbon capture and storage approaches
- * However, the current programs are not optimized for this.

