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Water vapor transport & modeling
Humidity in a GCM

Observed & Simulated Distributions of H,O
Basic concepts of water vapor feedback

Observed and Simulated H,O feedbacks




Basic Humidity Structure
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e High Humidity

— Polar regions

— Boundary Layer

— Tropical Upper Trop

Low Humidity
— Stratosphere
— Subtropics

Height (km)

L
@
e
—
o
W
@
e

o

0N BN N L 305 G5
MIN= 056 MAX = 11412

~ NN NNNEER B

o 1 25 4 &) 73 Hx 95




Pierrehumbert & Roca 1998, GRL
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How does It get that way?

Advection
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Basic Concept

* Run trajectories and constrain the
humidity by RH < 100%
— “Last Saturation” type models

* Does a pretty good job of reproducing
the basic pattern

e This Is one reason why GCM’s do a
decent job.




‘Last Saturation’ Models

AIRS v. Simulations
Dessler & Minschwaner, 2007, JGR
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‘Last Saturation’ Models

AIRS v. Simulations
Dessler & Minschwaner, 2007, JGR
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Humidity in a GCM

Water Is a predicted & advected species

— Special case: also affects heat budget
whenever it changes phase

Make sure it IS:
— Positive Definite

— Conserved (total mass)

Basic Concept is ‘Saturation Adjustment’
Plus a lot of other stuff!

— Microphysics

— Convection




GCM Water Vapor Budget

NCAR CAM4: “Moist Physics”

Water vapor budget

PTEQ = bcQ + VvDO1 + DMEQ
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Daep convection Ewap fallimg precip  Shallow convect  Evap falling precip
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CMEIOUT + EVAPPREC

Ewvap of falling precip

QCSEVAP + QISEVAP + QVRES - CMELIQ -

Residual Cond-evap of lig Dieposition/sublimation

ewvap from falling
within the cloud of cloud ice

evap from falling
cloud ice condensation

cloud water

Phil Rasch will discuss in more detall this week




GCM Processes: H,0O (Q) Tendencies

Q tendency

Q physics tendency
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GCM Q Tendency (2)
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Observed & Simulated Humidity

 AIRS observations

— Nadir IR sounder

— 50kmx50km footprint, 2x daily

— +20% humidity in 1-3km layers for g>20ppm
« CAM3 Climate Model

— 200km resolution
— Bulk Microphysics and Cloud Fraction




Water Vapor (RH)

Simulation (CAM Observations (AIRS
A) DJF Mean CAM RH 226 th _) D F Mean AIS RH @ 250hPa_

700 hPa




Vertical Structure: Mid Lats

A)DIJF AIRS RH 45 lat
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Vertical Structure: Tropics

A)DJF AIRS RH -10 lat
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New Delhi N. Atlantic

W. Pacific
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Convective Clouds: Organization

225hPa Relative Humidity (10S-10N)
Mode e AIRS

z . e | -
200312 p= : S = & 100

A
A
200311 e s S | 90
200310 B
200309 &

200308 &

2003)

200307

Month (

200306 =

200305 £

Date (YYYYMM)

200304 =

200303 &

200302 &

2 200301 ESE— | =
180 . 0 60 120 180
Longitude Longitude

Not enough simulated RH variability: wrong Cloud organization




Water Vapor Feedback

H,O Is the primary greenhouse gas
— Absorbs a lot In the infrared

H,O iIs a function of Temperature
Distribution due to advective transport

What happens to H,O if the temperature
changes?

Why?




“[W]ater vapor, confessedly the greatest thermal
absorbent in the atmosphere, is dependent on
temperature for its amount, and if another agent, as
CO,, not so dependent, raises the temperature of the
surface, it calls into function a certain amount of
water vapor which further absorbs heat, raises the

temperature and calls forth more vapor”

TC Chamberlin, 1905
Quoted in Held and Soden, 2000




Water vapor Feedback

e +T =2 +H20 - +Absorption =2 +T
« How much does it matter?
— Quite a bit...
 Where Is water vapor important?
—Where it is dry

— Where there Is lots of emission to space
(subtropics and the upper troposphere)




Feedback: Definition

Feedback for a process | defined as:
F=dR./dT,

R= top of atmos radiative change due to |

T =surface temperature

F has units of Wm= K-!

Feedbacks can be summed
(may not be linear)




Where does H,O Matter?

 Change in OLR for
e Top: T+1K
e Bottom: H,O+10%

Pressure (hPa)

Pressure (hPa)

280 285 290

Dessler et al 2008 -




Where does H,O Matter (2)?

 Change in OLR for
T+1K

* Top: Qsu(T+1K)

e Bottom: T+1K

Soden & Held 2000




Water Vapor ‘Amplification’

e Moller 1963

» Manabe & Wetherald 1967 | /SN
— Radiative convective model |
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The Catch

Most early studies assume fixed RH
But H,O Is determined by dynamics
(“Last Saturation” results)

So how do we know that RH stays
constant?

Especially in the upper troposphere?




Negative H,O Feedbacks

nat If convection goes deeper?
Dries Upper Troposphere
ncreases T above emission level

Cold Top,—Rro Amra=s o~
0 C’F, Dry detraining air 2

Cloud top ralsed

\ Level of

) J maximum
Cumulus /.7 heating raised
Tower ’

Intensity of
convectlon
increased

e
— Trade Inverslon

Heating

Lindzen 1990, BAMS




Model Simulations: Annual Cycle

In the annual cycle, warming
In the summer moistens the
upper troposphere

Top: SAGEII H,0O (annual
cycle)

Bottom: GISS Climate Model

Rind et al, 1991, Nature




Which Is correct?

e “Last Saturation” Presumes Efficient RH
condensation, but prescribes advection

— Should work with deeper convection?
What do we observe?
e Can’t observe climate change

* Look for analogues:
— Annual cycle

— Inter-annual variability:
 Volcanic Eruptions, ENSO, Unforced variations




Effects of Mt. Pinatubo

Mt. Pinatubo cooled the planet. Also reduced
H20O. Only with F,,5 > 0 can it be simulated
(Soden, 2002)

GCM
— GCM (constant RH)

— GCM (no drying)

1994 1995

[ Eruption




Inter-annual Variabllity

B) 250mb <Ts>" v. <H20>" (llatl<30)

A) 250mb <Ts>" v. <RH>" (llatl<30)

<H20> anomaly (ppmv)
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Response of upper troposphere RH and H,O to surface T

Model (CAM) and observations (AIRS) are similar

Both are ‘not inconsistent’ with constant RH hypothesis
(Gettelman & Fu, 2008)




Summary of Obs

H,O feedback is almost always positive

when analyzed using variablility: Annual
Cycle, ENSOQO, Volcanoes

When the atmosphere (especially the
upper troposphere) is warmer, it Is
wetter

Models & Obs indicate RH ~ constant
No evidence for ‘drying’




Other Feedbacks

* H,0 Is not the only ‘feedback’
* F .o related to other ‘feedbacks’
e Most importantly: Lapse rate feedback

Note: Cloud feedbacks are the ‘elephant in
the room’ (next week Is elephant week)




Lapse Rate Feedback

[ (-dT/dz) affects LW emission

Smaller I' = more emission to space
— smaller greenhouse effect
— more emission higher up (higher T)

Warmer T, = smaller I" (warmer moist
adiabats are less steep)

This is a negative feedback

LW emission is due to H,O: so this Is
coupled with F,,,4




Simulated F ,5 V. Fr-
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Feedbacks iIn models

= Colman 2003

< Colman 2003 (RCMs)
= Soden & Held 2005
> S&H 2005 (Fixed RH)
= Winton 2005
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Conclusions/Discussion

Models & observations appear to be
convergent regarding water vapor
feedbacks

Works for most scales examined
Could there be negative feedbacks
— E.g. Lindzen?

houghts? Why or why not?

What further tests could be run?




Final Note

Quantitative theory not obvious

Cloud Feedbacks are much less certain
Biggest uncertainty in models

On to Joao...




