Simulating H₂O and its Feedbacks ("Water water everywhere")

Andrew Gettelman National Center for Atmospheric Research

Outline

- Water vapor transport & modeling
- Humidity in a GCM
- Observed & Simulated Distributions of H₂O
- Basic concepts of water vapor feedback
- Observed and Simulated H₂O feedbacks

Basic Humidity Structure

Key features:

- High Humidity
 - Polar regions
 - Boundary Layer
 - Tropical Upper Trop
- Low Humidity
 - Stratosphere
 - Subtropics

How does it get that way? Advectionby eddies

TIME : 15-JUL-1993 12:00

Pierrehumbert & Roca 1998, GRL

Basic Concept

 Run trajectories and constrain the humidity by RH < 100%

- "Last Saturation" type models

- Does a pretty good job of reproducing the basic pattern
- This is one reason why GCM's do a decent job.

'Last Saturation' Models AIRS v. Simulations Dessler & Minschwaner, 2007, JGR

'Last Saturation' Models AIRS v. Simulations Dessler & Minschwaner, 2007, JGR

Humidity in a GCM

- Water is a predicted & advected species
 - Special case: also affects heat budget whenever it changes phase
- Make sure it is:
 - Positive Definite
 - Conserved (total mass)
- Basic Concept is 'Saturation Adjustment'
- Plus a lot of other stuff!
 - Microphysics
 - Convection

GCM Water Vapor Budget

NCAR CAM4: "Moist Physics"

Phil Rasch will discuss in more detail this week

GCM Processes: H₂O (Q) Tendencies

GCM Q Tendency (2)

Observed & Simulated Humidity

- AIRS observations
 - Nadir IR sounder
 - 50kmx50km footprint, 2x daily
 - ±20% humidity in 1-3km layers for q>20ppm
- CAM3 Climate Model
 - 200km resolution
 - Bulk Microphysics and Cloud Fraction

Water Vapor (RH)

Simulation (CAM)

A) DJF Mean CAM RH 226 hPa

A) DJF Mean CAM RH 696 hPa

Observations (AIRS)

A) DJF Mean AIRS RH @ 250hPa

700 hPa

250 hPa

Vertical Structure: Mid Lats

Vertical Structure: Tropics

Vertical Timeseries

Convective Clouds: Organization 225hPa Relative Humidity (10S-10N) Model AIRS

Not enough simulated RH variability: wrong Cloud organization

Water Vapor Feedback

- H₂O is the primary greenhouse gas
 Absorbs a lot in the infrared
- H₂O is a function of Temperature
- Distribution due to advective transport
- What happens to H₂O if the temperature changes?
- Why?

"[W]ater vapor, confessedly the greatest thermal absorbent in the atmosphere, is dependent on temperature for its amount, and if another agent, as CO₂, not so dependent, raises the temperature of the surface, it calls into function a certain amount of water vapor which further absorbs heat, raises the temperature and calls forth more vapor"

> TC Chamberlin, 1905 Quoted in Held and Soden, 2000

Water vapor Feedback

- $+T \rightarrow +H2O \rightarrow +Absorption \rightarrow +T$
- How much does it matter?
 - Quite a bit...
- Where is water vapor important?
 - Where it is dry
 - Where there is lots of emission to space (subtropics and the upper troposphere)

Feedback: Definition

Feedback for a process *i* defined as:

 $F_i = dR_i/dT_s$

R= top of atmos radiative change due to *i* T_s =surface temperature F has units of Wm⁻² K⁻¹

Feedbacks can be summed (may not be linear)

Where does H₂O Matter?

- Change in OLR for
- Top: T+1K
- Bottom: H₂O+10%

Dessler et al 2008

Where does H_2O Matter (2)?

- Change in OLR for T+1K
- Top: Q_{sat}(T+1K)

-0.6-0.55-0.5-0.45-0.4-0.35-0.3-0.25-0.2-0.15-0.1-0.05

• Bottom: T+1K

Soden & Held 2000

Water Vapor 'Amplification'

- Moller 1963
- Manabe & Wetherald 1967
 Radiative convective model

H_2O increases warming by 77%

TABLE 5. Change of equilibrium temperature of the earth's surface corresponding to various changes of CO_2 content of the atmosphere.

Change of CO ₂ content (ppm)	Fixed absolute humidity		Fixed relative humidity	
	Average cloudiness	Clear	Average cloudiness	Clear
$\begin{array}{c} 300 \rightarrow 150 \\ 300 \rightarrow 600 \end{array}$	-1.25 +1.33	-1.30 + 1.36	-2.28 +2.36	-2.80 2.92

The Catch

- Most early studies assume fixed RH
- But H₂O is determined by dynamics ("Last Saturation" results)
- So how do we know that RH stays constant?
- Especially in the upper troposphere?

Negative H₂O Feedbacks

- What if convection goes deeper?
 - Dries Upper Troposphere
 - Increases T above emission level

Lindzen 1990, BAMS

Model Simulations: Annual Cycle

In the annual cycle, warming in the summer moistens the upper troposphere

Top: SAGEII H₂O (annual cycle)

Bottom: GISS Climate Model

Rind et al, 1991, Nature

Which is correct?

- "Last Saturation" Presumes Efficient RH condensation, but prescribes advection
 - Should work with deeper convection?

What do we observe?

- Can't observe climate change
- Look for analogues:
 - Annual cycle
 - Inter-annual variability:
 - Volcanic Eruptions, ENSO, Unforced variations

Effects of Mt. Pinatubo

Mt. Pinatubo cooled the planet. Also reduced H2O. Only with $F_{H2O} > 0$ can it be simulated (Soden, 2002)

Inter-annual Variability

Response of upper troposphere RH and H_2O to surface T Model (CAM) and observations (AIRS) are similar Both are 'not inconsistent' with constant RH hypothesis (Gettelman & Fu, 2008)

Summary of Obs

- H₂O feedback is almost always positive when analyzed using variability: Annual Cycle, ENSO, Volcanoes
- When the atmosphere (especially the upper troposphere) is warmer, it is wetter
- Models & Obs indicate RH ~ constant
- No evidence for 'drying'

Other Feedbacks

- H₂O is not the only 'feedback'
- F_{H2O} related to other 'feedbacks'
- Most importantly: Lapse rate feedback

Note: Cloud feedbacks are the 'elephant in the room' (next week is elephant week)

Lapse Rate Feedback

- Γ (-dT/dz) affects LW emission
- Smaller $\Gamma \rightarrow$ more emission to space
 - smaller greenhouse effect
 - more emission higher up (higher T)
- Warmer $T_s \rightarrow \text{smaller } \Gamma$ (warmer moist adiabats are less steep)
- This is a negative feedback
- LW emission is due to H_2O : so this is coupled with F_{H2O}

Simulated F_{H2O} v. F_{Γ}

Why Anti-Correlated?

+ Δ H2O \rightarrow + Δ LW emission (more sensitive to Γ)

Coleman 2003

Feedbacks in models

Bony et al 2006, J. Climate

Conclusions/Discussion

- Models & observations appear to be convergent regarding water vapor feedbacks
- Works for most scales examined
- Could there be negative feedbacks
 - E.g. Lindzen?
- Thoughts? Why or why not?
- What further tests could be run?

Final Note

- Quantitative theory not obvious
- Cloud Feedbacks are much less certain
- Biggest uncertainty in models
- On to Joao...