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Water vapor and the transition to strong 
convection



• Issues with precip. simulation, esp. at regional scales, tropics: 
global warming, El Niño…, Sensitivity to convective schemes

e.g., IPCC 2001, 2007; Trenberth et al 2003; Maloney and Hartmann 2001; Joseph and Nigam 
2006; Biasutti et al. 2006; Dai 2006; Tost et al. 2006; Neelin et al 2007; Bretherton 2007...

1. Sensitivity of convective margin zones

2. Characterizing transition to deep convection 
- dependence on temperature and water vapor
- remote sensing statistics and buoyancy calculations from 

vertical structure

3.  Long tails in distributions of column tracers



• Sensitivity to convective schemes, interaction with large-scale
• [although some agreement on large-scale or amplitude]

Issues with precipitation simulation, especially at 
regional scales, tropics: global warming, El Niño…

e.g., IPCC 2001, 2007; Trenberth et al 2003; Maloney and Hartmann 2001; 
Joseph and Nigam 2006; Biasutti et al. 2006; Dai 2006; Tost et al. 2006; Neelin 
et al 2006; Bretherton 2007...

Precipitation change: HadCM3, Dec.-Feb., 2070-2099 avg minus 1961-90 avg.
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1. Sensitivity at convective margin 
Prototype model*: dry advection into a precipitating region

Precipitation 
(green) and 
moisture (contours) 
would be constant 
except for trade 
wind inflow 

•temp. & moisture 
equations, specified wind 
+ Gaussian variations;
•Analytic solutions for 
interplay with local 
thermodynamics and 
convective threshold

Composite on u variations

Climatology

Lintner &Neelin 2008, GRL



Prototype model: change in threshold for convection

Precipitation 
(green) and 
moisture (contours) 

Substantial impact 
of a poorly 
constrained aspect 
of convective 
schemes

Composite on u variations

Climatology (modified convective threshold)

Lintner &Neelin 2008, GRL



South Pacific Convergence Zone (SPCZ) composites: 
SSMI precip, column water vapor on wind variations

Composites on 
u925 mb avgd 
140ºW-120ºW, 
20ºS-10ºS.  

4 mm day-1 (weaker 
trades/less low-level 
dry air inflow)

4 mm day-1 (stronger 
trades/more low-level 
dry air inflow)

Daily SSMI

Lintner & Neelin (2008)



Precip. composite on local inflow wind anomaly

Composite on v∇P

Comp on v∇P:Comp on PRatio to composite on 
precipitation
Locally, monthly 
composite precipitation 
differences associated 
with inflow represent 80-
90% of total composite-
differenced precipitation

Inflow wind v∇P across 
gradient of mean 
precipitation
Atmospheric boundary 
layer (ABL) wind 
Large sensitivity at 
margin

Lintner & Neelin (2009, subm)



2. Transition to strong convection

• Convective quasi-equilibrium assumptions: Above onset threshold, 
convection/precip. increase keeps system close to onset  Arakawa & 
Schubert 1974; Betts & Miller 1986; Moorthi & Suarez 1992; Randall & Pan 1993; Zhang & 
McFarlane 1995; Emanuel 1993; Emanuel et al 1994; Bretherton et al.  2004; …

• Pick up a function of buoyancy-related fields – temperature T & 
moisture (here column integrated moisture w)

• Elsewhere: Onset of strong convection conforms to list of 
properties for continuous phase transition with critical 
phenomena (Peters & Neelin 2006, Nature Physics); mesoscale implications 
(Peters, Neelin & Nesbitt 2009,  JAS)

• Stochastic convective schemes  (and old-fashioned schemes too)  
need to better characterize the transition to deep convection 



Precip. dependence on tropospheric temperature & 
column water vapor from TMI*

•Averages 
conditioned on 
vert. avg. temp. 
T, as well as w 
(T 200-1000mb from 
ERA40 reanalysis)

•Power law fits 
above critical:

P(w)=a(w-wc)β
wc changes, 
same β

• [note more data 
points at 270, 271]

^

*TMI: Tropical Rainfall Measuring Mission Microwave Imager (Hilburn and Wentz 2008),  
20N-20S

Neelin, Peters & Hales, 2009, JAS 

E. Pacific



Collapsed statistics for observed precipitation

• Precip. mean & variance dependence on w normalized by 
critical value wc; occurrence probability for precipitating 
points (for 4 T values); Event size distribution at Nauru



Example from Manna (1991) lattice model 
(hopping particles—not a model of convection! 20x20 grid shown)

• Activity (order parameter) & variance dependence on 
particle density (tuning parameter)  [conserving case]

• Occurrence probability (log scale; very Gaussian) & event 
size distribution [self organizing case]
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Critical point dependence on temperature

• Find critical water vapor wc for each vert. avg. temp. T 
• Compare to vert. int. saturation vapor value binned by same T
• Not e.g., a constant fraction of column saturation
• lower tropospheric saturation qsat(T) binning gives same results

^
^

Neelin, Peters & Hales, 2009, JAS



Saturation value qsat (T) by level

• Saturation mixing ratio by level binned by vert. avg. temp. T 
• Compare to critical value & vert. int. saturation value vs. T
• Appears consistent with substantial control by lower free 
troposphere proximity to saturation

^
^



Check pick-up with radar precip data

• TRMM radar data 
for precipitation 
• 4 Regions collapse 
again with wc scaling
• Power law fit above 
critical even has 
roughly same 
exponent as from 
TMI microwave rain 
estimate
• (2A25 product, averaged 
to the TMI water vapor 
grid)

(w-wc)/wc

Peters, Neelin & Nesbitt, JAS, 2009



Entraining convective available potential energy and 
precipitation binned by column water vapor, w

• buoyancy & precip. 
pickup at high w
•boundary layer and 
lower free troposph. 
moisture contribute 
comparably*
•consistent with importance 
of lower free tropospheric 
moisture (Austin 1948; 
Yoneyama and Fujitani 1995; Wei 
et al. 1998; Raymond et al. 1998; 
Sherwood 1999; Parsons et al. 
2000; Raymond 2000; Tompkins 
2001; Redelsperger et al. 2002; 
Derbyshire et al. 2004; Sobel et al. 
2004; Tian et al. 2006)

*Brown & Zhang 1997 entrainment; scheme and microphysics 
affect onset value, though not ordering. 

Neelin, Peters, Lin, Holloway & Hales,  Phil Trans. Roy. Soc. A, 2008 
Holloway & Neelin,  JAS,  2009



Binning q, precip. on vert. int. water vapor
Spec.  humidity, q Precip.

[Note fewer
soundings 
in high bins]

Holloway & Neelin,  JAS,  2009

Nauru ARM
site observations

Binned by:
Column
water vapor

850-
200 mb

Surface-
950mb



No 
mixing Const. 

mixing
(Brown & 

Zhang 1997)

Const. 
mixing, 
only q in 

free tropos. 
changes

Const. 
mixing, 

with q in 
free tropos. 

constant

Lifted parcel buoyancy by column water vapor bins

• Highest column water vapor bins most buoyant
• Both boundary layer and lower free troposphere contribute



Deep 
inflow 

mixing A
Deep inflow 

mixing B

Deep inflow 
mixing B 

with instant 
freezing

(reversible)

Deep inflow 
mixing A 

with instant 
freezing

(reversible)

Lifted parcel buoyancy by column water vapor bins

• Highest few column water vapor bins deep convective
• microphysics between these cases; large potential impact



Prec & column water vapor: autocorrelations in time

• Long 
autocorrelation 
times for 
vertically 
integrated 
moisture (once 
lofted, it floats 
around)
• Nauru ARM site 
upward looking 
radiometer + 
optical gauge

Column water vapor

Cloud liquid water

Precipitation

Neelin, Peters, Lin, Holloway & Hales,  2008,  Phil Trans. Roy. Soc. A



Precip conditioned on lag/lead column water vapor

• High water 
vapor several 
hours ahead still 
useful for pickup 
in precipitation
• Consistent with 
high water vapor 
⇒ favorable 
environment, but 
stochastic plume
• Nauru ARM site 
upward looking 
radiometer + 
optical gauge

Holloway& Neelin JAS subm. 



•Averages 
conditioned on 
vert. avg. temp. 
T, as well as 
column water 
vapor w 

•Linear fits 
above critical 
(motivated by 
parameterizn)

P(w)=a(w-wc)β

as obs. but β=1 : 
to estimate wc

E. Pac.

*Runs, data R. Neale, analysis K. Hales

How do models do? CAM3.5 (0.5 degree run) *:
Precip. dependence on tropospheric temperature & 

column water vapor



Critical point dependence on temperature
CAM3.5 preliminary comparison

• critical water vapor wc for each vert. avg. temp. T
• Compare to vert. int. saturation vapor value binned by same T
• Suggests suitable entraining plumes can capture T dependence

^

^



Obs. Freq. of occurrence of w/wc (precipitating pts) 

Gaussian core
Critical

Eastern Pacific for various tropospheric temperatures

•But exponential tail above critical pt. ⇒ more large events
• with Gaussian core, akin to forced tracer advection- diffusion problems

(e.g.  Shraiman & Siggia 1994, Pierrehumbert 2000, Bourlioux & Majda 2002)

Exponential tail

•Peak just below critical pt. ⇒ self-organization toward wc



Precipitating freq. of occurrence vs. w/wc

Critical

Eastern Pacific for various tropospheric temperatures

•Includes super-Gaussian ~exponential range above critical pt.

Exponential range?

•CAM3.5 preliminary comparison

Column
saturation



• These statistics for precipitation and buoyancy related 
variables at short time scales provide new ways to quantify the 
transition to tropical deep convection as needed for models

• Tracer distributions consistent with simple prototypes; core 
with stretched exponential tails ubiquitous

Current retrievals are great but could sure use
• vertical dependence on temperature and water vapor
in deep convective regions, land,…
• Coordinated observations of condensate loading, freezing
• huge number of observations allow statistics to the computed 

consistently through range with large events

• Multiple tracers promising

Summary
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