(Low)* Cloud feedbacks

Graeme Stephens

* Perspective from observations - that a necessary test of
feedbacks (in models) is that the key processes be realistic

AT, centric low cloud radiative feedbacks — key process | will
highlight is the cloud (and preciptation) - radiation process

*AP centric high cloud radiative feedbacks — radiative heating of
the atmosphere by high cloud serves to regulate convection and
acts as a control on precipitation

* Toward a blue print for studying feedbacks
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A global system with global feedbacks

Input Output (AT,)
The system
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There are many issues to ponder:

*What is the real ‘system’ - most simple feedbacks (e.g iris, thermostat) are
postulated in terms very simple systems, the validity to real Earth never
justified.

*Why should physical feedback mechanisms be controlled by global mean
temperature?

*How might we define the system for a different output like AP, and does this
imply the existence of other (radiative) feedbacks?
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The planet’s energy balance
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© & Cloud Radiative Effects (CREs)

F observed clear (1 _Acla) Acld cldy

o clear cld ( cldy” clear)

CS WILW ( observed clear) - Acld ( cldy™ lear)

Cloud radiative effects and feedbacks involving changes to
CRE are influenced by changes in:

1) cloud amount A_,

and/or

2) cloudy sky radiative fluxes Feiay
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CTOA = CATM + CSURF CTOA is formed
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Atmospheric CREs

A-train observations now provide the means to

determine/confirm the atmospheric CRE (>0)

Global: JJA 2007
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In contrast to TOA effects, globally clouds radlatlvely heat the atmospheric column
and this heating is dominated by high clouds in the tropics — and this heating in turn
is an important ingredient to other key cloud-radiative feedbacks
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Low cloud feedbacks
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Low cloud radiative feedbacks

Recent studies reaffirm that the spread of climate 6oL Avz-ML (250, — CTRL)
sensitivity estimates among models arises primarily
from inter-model differences in cloud feedbacks (IPCC,
2007).
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There are two partsto t
low cloud feedback:
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“a i' Cloud radiative effects and low cloud feedbacks

Solar fluxes (ie cloud albedo) are governed by cloud optical depth
(and other factors) - Low cloud (radiative) feedbacks have been
hypothesized as occurring via changesin A_, LWP andr,

Stephens (1978) introduced
LWP

V

e

7=C,

So two factors govern the low cloud
optical depth feedback
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B » | Boers and Rotstayn propose
20
o 47 L W})cld =L W})drizzle_cld f (R
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and an empirical relation
But what about the i R o_p \
radiative effects of SR, )==11- tanh( max___on )
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(:ﬁ’ What do Earth observations tell us?

The A-Train

CALIPSO _CIoudSat
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Focus on just two properties: LWP and r,

This material is being documented in a paper that is in preparation
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In-cloud LWP statistics of low clouds

200 . 1 Using combined MODIS and CloudSat
- . 1 observations, we can separate the
C 1N ' ] .
c’g : _ . | properties for:
S 192f -
a _ | *All clouds (raining, non raining_) ~ TWP
5 128 7 S 7 *Clouds only (non-raining, no drizzle) -
S I CLWP
S 64f ] _
, y | *Drizzle (2>-15 dBZ)
) A 1 eRaining (Z>-7.5 dB2)
0 64 128 192 256 320

AMSR LWP (g/m2)

For the sampling applied, LWP derived from
two different approaches methods agree over
the range 20 - 200 g/m2 -ie | suggest we
know the LWP of low clouds (and furthermore |
suggest the ‘reference’ be MODIS)
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Observations Model 1 Model 2 Model 3
2007
Global 129 224 183
Oceans 77 161 194 150
Tropics 130 271 230
(35N/S) 87 196 170. 185
SH 122 144 95
(35S-60S) 79 98 240 86
NH 130 204 96
(35N-60N) 80 132 202 87

Total hydrometeor water path (TWP) in g/m2
Cloud liquid water path (CLWP) in g/m2

* Range of CLWP AR4 53-434 g/m2 with ensemble mean of 200 g/m2

Model 1= ECMWEF IFS
Model 2=CAM (AR4) — rain has no water content
Model 3=NICAM (@7km)




What about particle size?

Twomey & Cocks, 1980’s

Nakajima & King, 1990s , . _
Platnick Weighting Function TH1=18.2, TH0=49.5)
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tﬁ/ﬁ?’c about particle size - resolving a 20+ year conundrum

Results from FIRE, 1987 Nakajima et al., 1990 RAVHRR = 3.7 a Rmcr=2.1 a RPMS=aircraft
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Sampled only Tau_modis>1
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== The CloudSat radar reveals three distinct modes of water in warm s, ooty eze]

— clouds (drop, drizzle and rain) that correlate to 2.1 um particle sizes— — | gy1-14.m
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reminds us that drizzle and rain in warm clouds are common and
exerts non-trivial influences on low-cloud radiative p

roperties.
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This particle size is a deeper layer average
and reflects the significant effects of

drizzle and rain on

7N cloud radiative

properties

All clguds Clouds Dizzle Rain
LWP (g/m?2) 123/ 81.4 276.7 332
Optical depth 7.9 17.6 19.6
CDR (um) 16.3 14.6 22.6 24.6
MODIS
CDR (um) 11.54
(AVHRR)
Cloud top 1.44 \ 1.26 2.02 2.28
height (km)

Models assume values between about 8-12 um




Cloud optical depth
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15 1
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01
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0
Model low, warm cloud optical and radiative properties are significantly different
(biased) compared to those observed — two factors contribute to this extreme
(bright) bias - the LWP is one, particle size is another.
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Probability of rain in warm clouds

This and other results are beginning to reveal the issues in the way warm rain is
parameterized in models — this process significantly affects the water balance in
clouds and thus their radiative effects — this is clearly of some relevance to low cloud

feedback
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Summary

The optical properties of low clouds, in the mean, are affected (@ the 25%
level ) by the existence of rain and drizzle. This is not trivial and low cloud
feedbacks are likely to involve these precipitation processes

Model representation of low clouds contain serious biases (in both LWP
and particle size) — the optical depths of low clouds appears to be more
than a factor of 2 too large — resulting in and albedo —optical depth
sensitivity that is artificially too small (by almost a factor of 4)

Precipitation from low clouds occurs too frequently (drizzle/rain tends to
be turned on immediately) with serious consequences to the water budget
of model clouds and their radiative properties generally.

This is a real time of opportunity to study feedbacks - we have very rich
Earth observations that is begin to reveal aspects of key processes, a
growing record in time capturing important climate variability.




A blue-print

Such a blue print might involve:

1 Hypothesis driven concept about feedback - e.g. that low cloud feedback in a warming climate occurs
primarily as a consequence of atmospheric thermodynamic adjustments to the the warming (e.g. EIS)
that then alter the planetary albedo — | frankly don’t believe such hypotheses can be meaningfully
tested/refuted using current GCMs alone.

2. Construct/use simple models that address different aspects of this feedback - for example a simple
RCE model with a cloud water path —-temperature feedback will give you a sense for the importance of
other processes that might contribute to albedo changes that might refute such an hypothesis.

3. Build on this exploring the extent that the salient features of these feedbacks (like the
thermodynamic shifts if temperature, inversion strength etc) appear in more complex (realistic?)
models. Convince yourself that such models are realistic by appealing to observations.

4. Examine observations, LWP from satellites and its relation to temperature as an example , the
Clement et al type correlated trend study as another when possible, and develop other ways of
gleaning tests of key processes (including surrogate natural climate change experiments when possible)
all aimed at determining if key aspects of the hypothesized feedbacks reveal themselves in
measurements.

Don’t constrain yourself to flavor of the month themes — think outside
~ he box

~CI1RA



‘9“ R%‘dlahve convective equilibrium as a paradigm

for understanding feedbacks

Manabe & Moller,1961
Manabe & Strickler,1964
Manabe and Wetherald, 1967

Stephens and Webster, 1980

Sommerville and Remer, 1984
Stephens et al., 1990

Held et al., 1994

Important studies that demonstrated how changes to
GHG, solar forcings and water vapor feedbacks operate
in a climate-like system. Some early ideas about cloud
effects began to emerge.

Demonstrated how clouds shape RCE state —
introduced the important role of cloud water/ice
path and the important differences between high
and low clouds

With water path now understood as pre-eminent,

examined the water and ice path-Ts feedbacks
first hypothesized by Paltridge (1980)

Introduced a new paradigm — RCE with explicit
convection using a cloud resolving model, on a small
domain (100’s of km) and O(4km) resolution
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Radiative convective equilibrium

Grabowski et al ,2000s

Tompkins —1998-2002

Stephens et al., 2004
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Larger domain studies mostly in 2D — reaffirming the
self aggregation of convection, hinting at cloud
radiation feedbacks

Tompkins performed a number of studies over this
period, examining effects of shear, SST, and other
factors on RCE.

First use of the RCE-CRM to examine effects of cloud-
aerosol interactions on RCE
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Cirrus detrainment —surface temperature feedbacks (e.g Chou &
Neelin, 1999; Lindzen et al., 2001; Ramanathan and Collins, 1991)
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decreasing SST (R&C- negative feedback)
(iv) Decreasing cirrus —

decreasing SST (IRIS negative feedback)
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& Iﬂ High clouds and convective feedbacks

A number of studies have hypothesized on the importance of cloud radiative
heating of the atmosphere and feedbacks related to it (Slingo and Slingo, 1988;
Fowler and Randall, 1993; Stephens et al. 2004).

Sea Surface Temperature (SST)
Time — [ warmer [l cooler

SI gmly

N

(l m LAP

ea . nds \
linds Winds | \ ' vaporation
7 ¥ ZEST " A\ 00l \
ois farm - < 9
. ‘ l + ilization Phase ctive Phase Restoring Phase
ASST>0 ASST<0 Aasle

ACloudmess e.g. Humidistat feedback of
(high) Stephens et al (2004)
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3';"‘ Convective feedbacks and the control on

global precipitation?

30 [ T T T T T T T T T | T T T
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~;3"'f" Convective feedbacks and the control on global
™,

precipitation?

AR = LAP + AS

AR =AR . -AC,

net ,atm net ,clr

/

Controlled by
water vapor
changes Aw

% Change

Changes in atmospheric CREs
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-l Column Water Vapor

IPCC FAR

T |

Curve of growth Aw

Sensible heat AS

0 1
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Cloud radiative
Effects AC

Cloud - radiative processes, sensible heating changes tug at the magnitude of the
global change of precipitation which is to first order set by the water vapor feedback

Stephens and Ellis, 2008; J Climate
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i S L :
cloud radiation feedbacks are also a major source of

uhcertainty & aerosol effects are unknown

Water vapor
emission

Aerosol

?7?

Change in precip per given

change in warming

Sensible
heat

i)

N\
N

Stephens and Ellis} 2008

~2 %/K
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& Iﬂ High clouds and convective feedbacks

Lebsock et al (2009) use A-Train observations to show tropic-wide radiative heating
anomalies correlate with UT temperature anomalies and how the temps lags the heating

— further hints at the existence of a radiation-convective feedback
(A) Lag—-Correlations with Precipitation
1 at S
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1 1
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t1":{r<§?)‘erties of Low oceanic clouds as revealed by the A-Train

* Low oceanic clouds = identified by MODIS low cloud mask (uses
cloud top temp and other properties)

* Only single layer clouds (as determined by lidar info) analyzed

e Statistics accumulated over JJA and DJF seasons

1.000F /7™ ; 1.2
-\ Lidar based cloud - Fractional occurrence |

. 1.0
“\top heights :

©
o
o

normalized counts

0.010¢

00001 Lo v o
0 2 4 6 8
cloud top height cloud top height

« These low clouds lie below 4km
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Example orbit

532 nm Total Attenuated Backscatter, /km /sr  Begin UTC: 2007-06-03 19:24:48.8861 End UTC: 2007-06-03 19:38:17.5331
Version: 2,01 Image Date: 02/21/2008
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In-cloud LWP statistics of low clouds
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AMSR LWP (g/m2)

For the sampling applied, LWP derived from

two different approaches methods agree over
the range 20 - 200 g/m?2
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normalized counts
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Drizzling/raining low clouds are wetter, contain larger particles are optically thicker
and and reflect significantly more solar energy than non-raining low clouds
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Summary:

1) Low clouds dominate the global TOA CRE via their influence on sunlight
reflected to space.

2) The reflection of solar energy by a cloudy atmosphere is controlled by cloud
amount, the water path and particle size and changes to these properties
underlie hypothesized cloud-climate feedbacks.

3) The presence of drizzle in low clouds is prevalent enough that it has an
observable consequence on the mean radiative properties of clouds (e.g. 18
Km mean particle size).

4) There are preliminary hints that the representation of low cloud radiative
effects in models may be significantly biased high (water contents too large,
particle sizes too small, optical depths too large and the amount of sunlight
reflected by a given volume of cloud too large).
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1. Accumulation - amount of precip
accumulated over some time period —
typically expressed as a rain rate —
climatological applications this is the most
frequently analyzed form of precip used to
compare to models —the accumulated
precip on large space and long time scales is
controlled (constrained) by energetics - ie it
has to be ~ 3mm/day globally

2. Character of precipitation (accum =

frequency X intensity ) much less focus but
essential to most hydrological applications
and to many precip-related climate
processes. There is no obvious constraint on
this pair of characteristics.
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 We use CloudSat observed frequency and intensity for JIA
(2006)

* Special experiments performed using ECMWEF forecast model
(JJA 2006) and UMKO climate model (JJA 5 yr seasonal)

e Upscale CloudSat (1.7km) to model resolution (ECMWEF, 0.5

degree, UKMO 1.25 degrees, 2 degrees for two models) via
averaging along track

 Compare to model properties employing the lower CloudSat
threshold of 0.05mm/hr also up-scaled to model resolution

Work in progress




Properties: JIA frequency (all sky) of liquid precipitation
— ‘upscaled’ to 0.5 degrees

Frequency ~ 0.21 Mean rain rate slightly lower than model — obs slightly under
represent the heaviest rain)




{: fﬁA Oceanic Precipitation Model Comparison Summary

Data Source Incidence Mean Rain rate
mm/day

CloudSat 0.11 2.86

(native)

CloudSat (0.5) 0.212

ECMWE 0.679 2.83

CloudSat (1.25) 0.309

UKMO 0.493 2.65

CloudSat (2) 0.372

CAM 0.880 2.71

AM-3 0.908 2.94

How often it rains at any CS footprint or model grid point
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Probability of Precipitation > Threshold
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Many studies attempted to deduce =

JA

c

where A_is the total cloud amount based on observations (Cess,
1976, Ohring & Clapp, 1980, Hartman and Short, 1980, ....) but
these early estimates all suffered in one way or another -

An important step forward in TOA derived quantities came with
ERBE and the improved ability to discriminate clear and cloudy
schemes via the broad-band scanner instrument
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Cloud trends correlated with SST changes (Clement et al., 2009) — a very gross
synopsis of cloud changes — this doesn’t test feedbacks in models because these
hinge on mechanisms and we need more quantitative understanding of how the
processes of these mechanisms change
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