National Aeronautics and
Space Administration

Jet Propulsion Laboratory
i California Institute of Technology
Pasadena, California

Cloud Feedbacks and Climate Models

Jodo Teixeira

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California, USA

Together with many people including S. Cardoso (IDL/NCAR), A. Gettelman (NCAR),
B. Kahn, S. Klein (LLNL), P. Miranda (IDL), A.P. Siebesma (KNMI), P. Soares (IDL),
Y. Zhang (LLNL) and the GPCT group



Natonl Aeronsues an ClimaTe IS changing YET there is Iar'ge

sge  uncertainty in climate prediction

IPCC 2007: "Cloud feedbacks remain the largest source of uncertainty”

GFOL AMZ-ML (ZeC0, — CTRL)
B iy

Doubling CO, = less
low clouds in GFDL =
- 4 K global warming

k3 L] =t 4] (=]

2XCO, Sensitivity [K]

uh

=)

+ Doubling CO, < more
I, low clouds in NCAR >
LN l 2 K global warming

Stephens (2005)

How good are models? What is the problem? representation of small-scales



wemiens GCSS Pacific Cross-section Intercomparison

Space Administration

A A (GPCI): status and progress

Pasadena, California

ISCCP Low Cloud Cover (%)

. GPCI is a working
_ 40 group of the GEWEX

» Cloud Systems Study
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Models and observations are analyzed along a transect from
stratocumulus, across shallow cumulus, to deep convection
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Subtropics to tropics transition: satellite
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observations of mean relative humidity and
cloud occurrence

AIRS relative humidity CloudSat cloud
JJA 2003 occurrence JJA 2006

AIRS
relative humidity (%o) . —remme gy g
. . 20000————2— T T

18000}

16000}
14000}
E 12000}
£ 10000}
8000}
6000}
4000}

2000}
1000 0

heig

pressure (hPa)

WOON DPuG
oo Lo

1 2 5 8 111417202326293235 125 8111417202326293235
latitude (degrees) latitude (degrees)

Satellites show transition from subtropical PBL clouds to deep tropical convection ...
these observations did not exist when we started planning for the cross-section.
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Pasadena, California cloud cover (%)

Cloud Cover along GPCI
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Large differences in
clouds between models
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It is related to the classic turbulence closure problem with additional
complexity: buoyancy, phase-transitions, radiation, precipitation,
gravity waves, wide range of scales (from 10-3 to 10 m)

t Resolution of climate prediction models: Ax=Ay~100 km
Ax z
>‘ :5 0.3
S S PN £
g < O > g, "
RS o
§ (:) O // 0.1
S
¥ Ter?li)erature (fio)
, | PDF of temperature in model grid-box
longitude

Essence of parameterization problem is the estimation of joint PDFs
of climate model variables (u, v,w,T, q) -> e.g. co-variance '@’
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Atmospheric/oceanic model equation for a generic variable can
be written as:

Using Reynolds decomposition and averaging Q= (_0 +o'
to get an equation for the mean:

0p & (—\ 0 (,— 0 ,—\ 0O —
8f+ax(u¢)+5(w)+a_z(w¢):_a s,

vertical sub-grid

It is assumed that S is linear and the \ﬂux needs to be
horizontal divergence terms of the sub-grid parameterlzed

fluxes can be neglected
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Eddy-Diffusivity (ED) approach
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In ED closure the sub-grid flux is parameterized as

W' =k

where k is the diffusivity coefficient. The mixing length approach (e.g.
Taylor, Prandtl) is

k, =c,lw,
where w, is a turbulent velocity and /is a mixing length.
ED is successful in representing:

- Surface layer (MO theory), momentum mixing

- Neutral/stable boundary layers => Logarithmic-law:

Surface layer (constant flux): wu'w'=-U; = const.

w,cU, and [ocz leads to

u'w':—kg—u:ZU*Z—uOCUf 8:>uocU*ln(z/zO)
Z Z
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Mass-Flux (MF) approach

MF closure is based on parcel ideas (e.g. Sfommel 1947) and
attempts to represent strong upward/downward convection:

s wo'=aw, (@,,—0)

a - updraft/downdraft area
w,,,; - upward/downward
vertical velocity in a

¢, - variable value 1n a.

free
atmosphere
inversion

cloud layer

LCL

mixed
subcloud layer

MF is typically used for
parameterization of moist
convection

Mass-flux (MF) represents
large-scale eddies

Eddy-Diffusivity (ED)
represents small-scale eddies
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Moist conserved variables

California Institute of Technology
Pasadena, California

Y . . For convenience:
Traditional dry set of thermodynamic variables e e 65
OR[N oq 0 (—— ol 8, — variable ® 1s often
5—‘5(“’ ’ )*C—p;C 5—‘5(“’ q')-C 5—‘5(“’ I')+C|| representedas @

6 - potential temperature, g - specific humidity, / - liquid water

Moist conserved variables

g, =q+I

o0 0 (—— aq, O (v
-l Ly

Total water content

L
o =9[1— T’ J Liquid water potential temperature

p

Two major practical advantages of using conserved variables:
1) The cloud/condensation term disappears from the equations

2) The ED and MF approaches are able to represent the correct
cloud fluxes
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PDF-based cloud parameterizations are based on the pdf of ¢,
(in this simple example) or on the joint pdf of ¢,and 6,

Total water: q,=q + 1 Values lgrger than
saturation are cloudy

Probability

a= Tp(%)dqt

qs

_ I= | (4,~4,)p(q,)dg,

qS
7
With Gaussian distribution we obtain cloud fraction and liquid water as a function of @
o 4. — 4
e /2 Q At A5

1.1 (0 1
z+2e’”f(ﬁj N5 .

Characterizing the variance of thermodynamic properties is essential
for cloud parameterization developmclaln‘r
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Aircraft observations of variable Q

Gaussian pdf Stratocumulus

{a) ASTEX mid stratocumulus (a209r2.4) Skewness=-0.14 Altlitude=435 m
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Skewed pdf Cumulus

How realistic is a Gaussian approximation?
12 Larson et al 2002
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How to determine the variance of total water?
1) Prognostic equation:

a ! ' ! !at a ! ! ! t' t'
5(% q, )=—2w q, ai —az(w 9.4, )—%

q

2) Diagnostic equation:

0q,
0z

q, 'qt': _2qu'qt '

Eddy-diffusivity Mass-flux
oq, ) 0
! { - t ' i u qr
q: 4, 2qu( aZJ qg. 4, = 2TqM(% Qt) Oz
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PDF-based stratocumulus cloud

Space Administration

st parameterization in a coupled model
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Models and
observations

for Aug. 2004 New model much

closer to
observations
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Teixeira et al. 2008 =
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Trying to unify boundary layer convective
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transport in clear, sub-cloud and cloud layer

Standard climate model approach:

Y. e p D2 ()5
W'¢'E—K_ W'¢’EM(¢u_¢) AW 3
0z ﬁ ot Oz ( ’ )
-diffusion %IVIHSS flux cumulus layet Thls modular‘i'l'y Ieads 1'0
problems:

* Possibility of "double
counting” of processes

‘Interface problems

‘Problems with
transitions between
different regimes
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Dividing a grid square in two regions (updraft and environment) and
using Reynolds decomposition and averaging leads to

we'=awe' +(1—au)w'go'e +a (I—a )w —w )@ —@)

where g, is the updraft area. Assuming a,<<Z and w_~0O leads to

wo'=we', +aw, (o, —p)

ED closure: assuming ED for 15" term and neglecting 2"d term

MF closure: neglecting 15" ferm and assuming M=a w,

a OQ o
EDMF: W@ =— EqD‘FM(% —Q)

20 Siebesma and Teixeira 2000
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ey A dry convective boundary layer case study
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PBL height growth Mean profiles after 10 hours

EDMF : Realistic PBL growth and mixed layer profile (counter-gradient effect)

ED : Unstable Profile in lower PBL and too fast PBL growth

ED + Counter-Gradient (CG): Too slow PBL growth (small entrainment)
! Siebesma et al, JAS, 2007
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1) Oklahoma ARM S|'|'e maximum cloud fraction
2) 21 June 1997 ' RACMOMR --em T y 7
TV ! |
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No model is able to capture the diurnal cycle of convection
18
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iy EDMF approach and the ARM case
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1) ED coefficient is based on prognostic turbulent kinetic energy (TKE);
2) MF is based on updraft vertical velocity equation;

3) Updraft values estimated as a;“ — —g(¢u —g) (¢ is the lateral entrainment)
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What is the strategy for parameterization
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High-resolution data: Testing in Single Column Models: 3D Climate/Weather Models:
Large Eddy Simulation (LES) Models VersionstorRBliiaTe Models Evaluation and diagnostics
Cloud Resolving Models (CRMs) / for a variety situations
Field experiment observations to Global satellite
build case-studies and for observations for 3D
model evaluation model evaluation

It has been a fairly (but not fully) successful strategy for the past 10 yrs
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Bimodal joint pdf of wand gt
Large Eddy Simulation (LES) model i<

- BOMEX shallow cumulus case

q, lg/kg)

w (mis)

Siebesma et al

Clear environment:
Eddy-Diffusivity (ED) mixing

Cloud core updrafts:

i Mass-Flux (MF) transport
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= (Cloud-climate feedbacks are a major issue in climate prediction

= Climate prediction models still have serious difficulties in representing small-
scale processes such as turbulence, clouds and convection

= Recent satellite data is able to characterize vertical structure of cloud regime
transitions (e.g. subtropics to tropics transition) - but not in boundary layer

= Large Eddy Simulation (LES) models are essential tools for boundary layer cloud
and convection parameterization development

= New parameterization approaches that lead to more realistic results:

1) PDF-based cloud parameterizations are based on a solid theoretical framework
and have solid connection to observations

2) Eddy-Diffusivity/Mass-Flux (EDMF) approach successfully combines boundary
layer and convection parameterizations

What satellite observations are needed to help improve the

representation of boundary layer clouds in climate models?
22
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Aircraft observations of variable Q

{a) ASTEX mid stratocumulus (a209r2.4) Skewness=-0.14 Altitude=435 m
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In many situations clouds "are” Gaussian
23
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Cloud parameterization :

Space Administration

A S A A brief history until 1980s

Pasadena, California

1960s: Cloud properties - artificially prescribed
1970s: Cloud fraction - empirical function of relative humidity (RH)

Cloud water - prescribed
1980s (Slingo, 1987): Lo
Cloud fraction - function of RH, inversion 0.8 | —— ECMWF (1981)

—— HIRLAM (1979)

strength (Sc) and convective rain (Cumulus)
Cloud water - prescribed or function of gs

cloud fraction

1980s (SUHdQViST, 1989) 05 06 0{7 08 09 10
Cloud water - prognostic (but empirical) o N
Cloud fraction - empirical function of RH

24
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mesmiaonsy —UUSiNG LES to derive updraft model in dry
convective boundary layer.
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m / wneemsos GCSS Pacific Cross-section Intercomparison (GPCI):
kS s Tropical and subtropical cloud regime transitions

Pasadena, California

o

ISCCP Low Cloud Cover (%) Sea Surface Temperature

R L N N A N R N e

T T I = 302 |
0wl TH R AR

40 28 g AM2 B

O 206 L % ARPEGE _

30: . --m- CAM 3.0 .

B 204 - k- GSMO0412 s

20 -~ HadGAM 1

292 _— —— RAC —_

10 200 |- —0— GME _

- : 288 -|||||||||||||||||||||||||||||||||||||||||-

180 200 220 240 260 280 -1 2 5 8 11 14 17 20 23 26 29 32 35
Courtesy C. Hannay latitude (degrees)

GCSS/WGNE Pacific Cross-section Intercomparison (GPCI) is a
working group of the GEWEX Cloud System Study (GCSS)

Models and observations are analyzed along a transect from
stratocumulus, across shallow cumulus, to deep convection

Models: GFDL, NCAR, UKMO, JMA, MF, KNMI, DWD, NCEP, MPT,
ECMWF, BMRC, NASA/GISS, UCZ%D, UQM, LMD, CMC, CSU, GKSS
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GPCI mean relative humidity - JJA 2003

Jet Propulsion Laboratory
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NCARv2 GFDL METOFF
relative humidity (%) relative humidity (%) relative humidity (%)
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+ counter-gradient approach?
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Decomposing the eddy-diffusivity (ED)
and counter-gradient (CG) terms
2000 ————

1500 X[~ i

1000

height (m)

_ Very small entrainment flux
- because counter-gradient

500 —
l (CG) term cancels ED-term

0 111 11— 111
-0.02  0.00 0.02 n.n4 0.06 0.08

w' @’

28 Siebesma et al, JAS, 2007
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Model Results

Organization Model Type
BMRC (Aus) BAM 4.0.21 |Global
CCC (Can) CCCma Slobal
CMC (Can) GEM Regional
CSUBUGSE (U3) BUGS Global
CSU/MMF (US) MMF Global/MMF
DWD (Ger) GME Slobal
ECMWF (UK) ECMWEF Global
ETH / MPI (Ger) ECHAMS Global
GFDL (US) AMZER12b Slobal
GKSS (Ger) CLM Regional
JAMSTEC (Jap) AFESZ Global
JMA (Jap) GSMO412 Global
FNMI (Ned) RAC Regicnal
LMD (Fra) LMDZ4 Slobal
MeteoFrance (Fra) |ARPEGE Global
MASA/IGISS (US) GISS 3.3 |Global
MCAR (US) CAM 3.0 Slobkal
MCEP (US) GFS&MOM3 |Global Coupled
MCER (US) EFs Global
UCLA (US) UCLAtM7.3 |Global
UCSD (US) RSM Regicnal
MO (LK) HadGAM Global
UQmM (Can) CRCM Regional




pressure (hPa)

¢ National Aeronautics and

e, OGPCI: JTA98 mean vertical velocity

IERY  California Institute of Technology
. Pasadena, California

All models exhibit Hadley-circulation-like features...
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Characterizing the transition: evolution of
boundary layer and cloud top height

Boundary layer height (altitude of max RH gradient) Cloud top height

700 . 700
Il Model range Il Model range
Inter model std Inter model std
=—Mean model —Mean model
750 750
AIRS === MISR no corr.
===s EC-analysis

Pressure (hPa)

0 5 10 15 20 25 30 35

800

850

Pressure (hPa)

--------

(=10

950

-,
------

5 10

- *
a—
Lo

==== MISR wind corr.
===z EC-analysis

MISR tracks EC while there
are stratocumulus Histograms of
), Lattude:35 ), Latiude32 ), Lattude:2s ), Lattude:26  Latiude:22 MISR CTH'
| | | | ] ; transition from Sc
06 0.6 0.6 0.6 0.6/
A to Cu under Sc
0.4 0.4 0.4 0.4 0.4 '
0.2 0.2 02 02 02! J— ﬂﬂff;:f:fd
K l m P M uncorrected no high clouds
% 2000 4000 0 2000 4000 0 2000 4000 0 2000 4000 0 2000 4000 corrected no high clouds

Satellite observations can characterize well PBL and cloud top height

31



National Aeronautics and

Space Admisuaton Large-Eddy Simulation (LES) studies for cloud

Jet Propulsion Laboratory

California Institute of Technology par‘ameTer‘ i za-‘- i o n deve I O pmenT

Pasadena, California

LES models (high-resolution models Ax ~ 10-100 m that partially resolve
turbulent/convective flow) are used to study the cloudy boundary layer

q,, (g/kg)
o

two stratocumulus
cases:1) ASTEX,
2) FIRE

two cumulus
cases:1) GATE,
2) Puerto Rico

310

Cuijpg;')s and Bechtold, 1995
LES is used to obtain cloud fraction and liquid water
parameterizations as a function of Q = e

o
\ l/lo -
i O.5+aarctan(7uj
o

o
=

)
o

Cloud fraction

=}
o
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Characterizing the transition: histograms of
cloud cover

¢ National Aeronautics and
" Space Administration
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Pasadena, California ISCCP

number of events (%)

UKMO | NCAR
HadGAM oo | CAM 3.0 '

- number of events (%) (e \J o number of events (%)

2 i isionn [ ¢ =g |
—~ 29 ! 5 A =
D 26 | NS 17 1 9 26 J
® 23 J 9 2 23 J
% 20 A 21 9 87 20 A
T 17 | Ao 21y e L
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L 14— g > QL 14 o M
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g total cloud cover (%) p \

0 10 20 30 40 50 60 70 80 90 100 ISCCP ls beTWeen 0O 10 20 30 40 50 60 70 80 90 100

total cloud cover (%) total cloud cover (%)

continuous and bimodal

= NCAR low cloud parameterization is partly based on "climatology”
=> continuous transition

= UKMO (and partly GFDL) cloudy-PBL parameterizations are based
on the idea of distinct-regimes => discontinuous transition

= TSCCP suggests that none of these two “"extreme"” concepts is fully

valid =>relevant for parameterization development
33
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e SST sensitivity to cloud parameterization

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Models and
observations
for Aug. 2004

Large SST warm
biases reduced by
new model

ki GOE 1Z0E T8 120W BOY G

[
3 -1 2

SST: old_model - analysis

4 =] 53

a GOE 1Z0E 183 120% BOW 13 805
) BOE 1Z0E 180 120% BOY

SST: new_model -

Teixeira et al. 2008

3 4

old_model

C
] 1 2 ]

SST: new_model - analysis
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