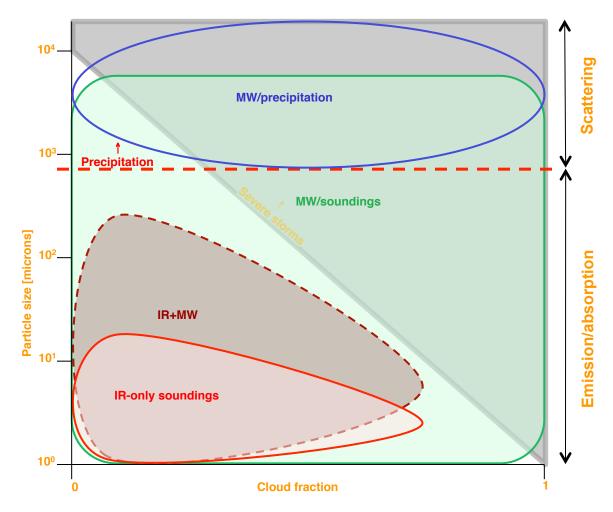

Are microwave sounders

obsolete?

Bjorn Lambrigtsen
(with contributions from many others)

JPL



KISS Workshop on Innovative Satellite Observations to Characterize the Cloudy Boundary Layer

Caltech; September 22, 2010

Why we need microwave sounders

MW sounders measure all three phases of water: vapor, liquid (incl. rain), solid (incl. snow) Ideally suited for the hydrologic cycle

Note: This is a 2-D view of a multidimensional world Additional dimensions include spatial and temporal scales

Why not just IR sounders?

IR vs. MW: Pros & Cons

IR sounders vs. MW sounders

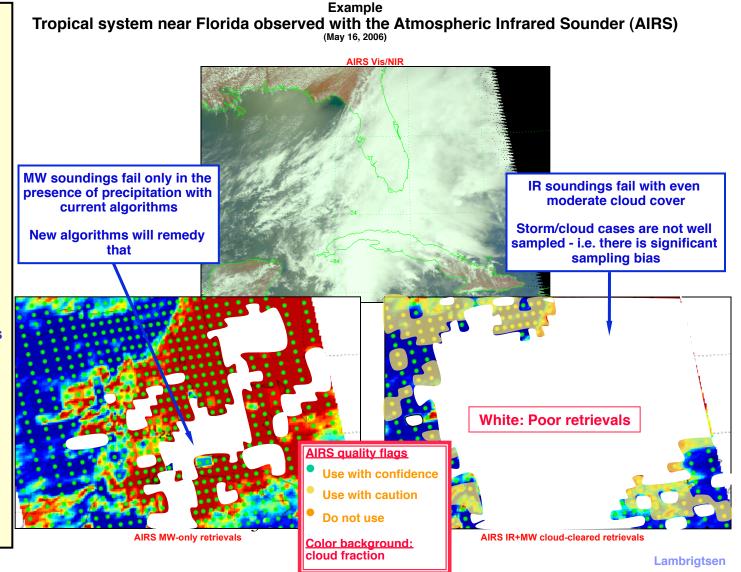
Spatial resolution

--IR vs. MW: 10-15 km vs. 15-50 km hor.res.; 1-1.5 km vs. ~2 km vert.res.

Basic sounding accuracy

--IR vs. MW: 1 K vs. 1.5 K for T(z); 15% vs. 20% for q(z); none vs. 40% for L(z)

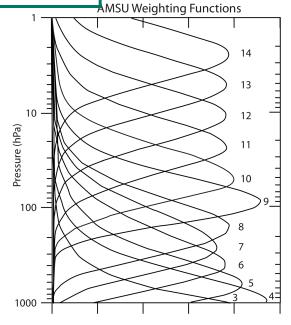
Scene coverage


- --Cloud free: IR outperforms MW (but IR = MW in coverage)
- --Partly cloudy: IR < MW (IR depends on "cloud clearing", a noise-amplifying process)
- --Fully cloudy, storms: MW far outperforms IR ("cloud clearing" cannot be done)

Hurricanes & severe storms

- --IR can only see cloud tops, often obscured by cirrus canopy
- --MW can see to surface (except in heavy precipitation: switch to convection algorithms)

Summary


- --IR is best suited for global observations and storm precursor conditions in clear sky
- --MW is best suited for observing in/through storms and precursor conditions in clouds

Satellite MWS state of the art: AMSU

AMSU-A (temperature sounder); spatial res ~ 50 km

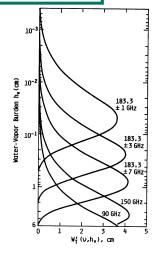
C)	G 6	L D . 1.1.1		D 1
Ch	Cen.freq.	B-width	Meas.	Pol
#	[MHz]	[MHz]	NEDT [K]	
1	23800	1x270	0.17	V
2	31400	1x180	0.25	V
3	50300	1x160	0.25	V
4	52800	1x380	0.14	V
5	53596±115	2x170	0.19	Н
6	54400	1x380	0.17	Н
7	54940	1x380	0.14	V
8	55500	1x310	0.16	Н
9	57290.344 [fo]	1x310	0.16	Н
10	fo±217	2x 77	0.22	Н
11	fo±322.4±48	4x 35	0.24	Н
12	fo±322.4±22	4x 16	0.36	Н
13	fo±322.4±10	4x 8	0.50	Н
14	fo±322.4±4.5	4x 3	0.81	Н
15	89000	1x2000	0.12	V

AMSUs are flying on multiple satellites:

- NASA/Aqua
- NOAA-15
- NOAA-16
- NOAA-17
- NOAA-18
- NOAA-19
- Metop-A

Producing > 2 million soundings per day!

ATMS coming soon

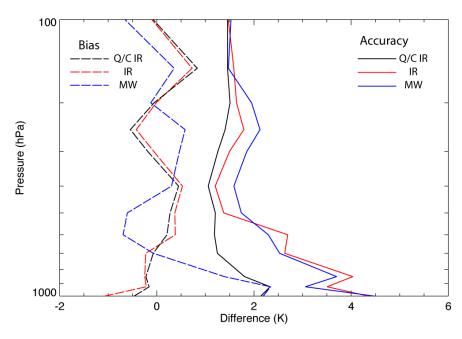

- NASA/NPP
- JPSS

ATMS ≈ AMSU, except

- 2x humidity channels
- 30 km res T-sounding

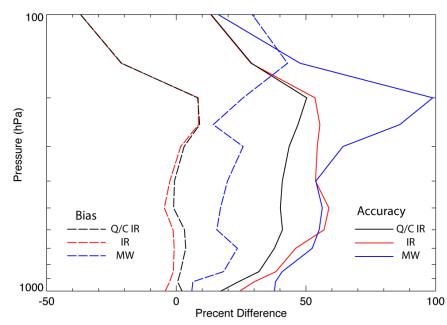
AMSU-B (humidity sounder); spatial res ~ 15 km

Ch	Cen.freq.	B-width	Meas. NEDT	Pol
#	[MHz]	[MHz]	[K]	
	89000	1x4000	N/A	V
	150000	1x4000	0.68	V
	183310±1000	2x 500	0.57	_
	183310±3000	2x1000	0.39	_
	183310±7000	2x2000	0.30	V

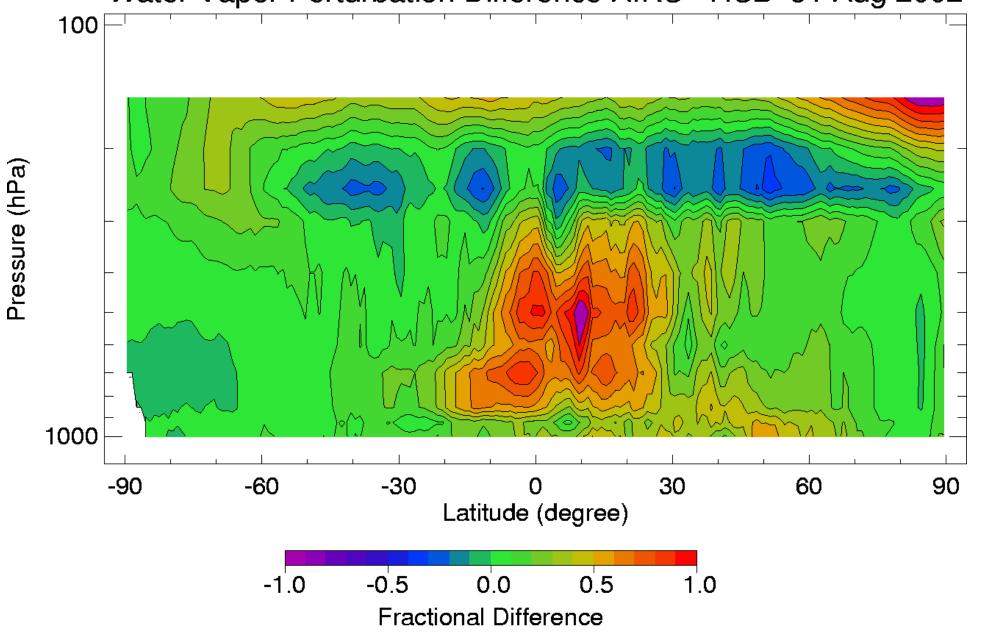


Other products:

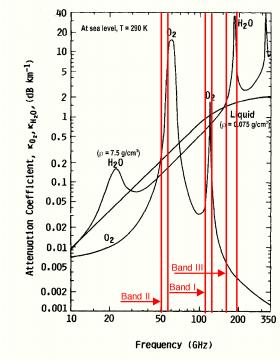
- Cloud liquid water (~ 1 piece of info ≈ LWC or nominal profile
- Precipitation (height resolved)

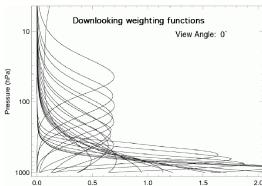

Sounding accuracy: IR vs. MW

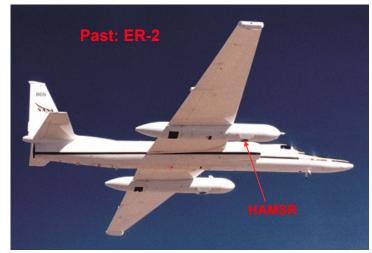
Global statistics, one day


Water vapor retrievals →

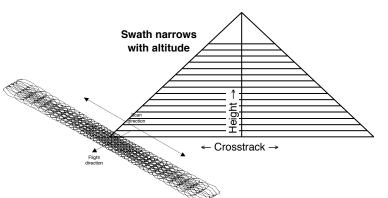
← Temperature retrievals

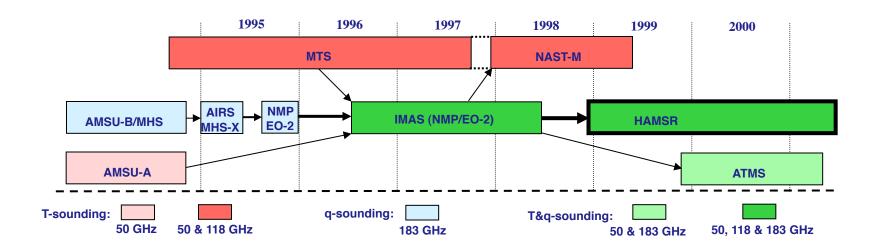

Regime sampling: IR vs. MW


Water Vapor Perturbation Difference AIRS - HSB 31 Aug 2002



Aircraft MWS state of the art: HAMSR


The High Altitude MMIC Sounding Radiometer HAMSR



Chan	Center	Offset	Bandwidth	Wt-func. Peak
#	freq.	[GHz]	[MHz]	[mb or mm]
	[GHz]			
I-1	118.75	-5.500	1500	Sfc/[30 mm]
I-2	"	-3.500	1000	Surface
I-3	"	-2.550	500	Surface
I-4	"	-2.050	500	1000 mb
I-5	"	-1.600	400	750 mb
I-6	"	-1.200	400	400 mb
I-7	"	±0.800	2x400	250 mb
I-8	"	±0.450	2x300	150 mb
I-9	"	±0.235	2x130	80 mb
I-10	"	±0.120	2x100	40 mb
(I-1)	50.30	0	180	Sfc/[100 mm]
II-2	51.76	0	400	Surface
(II-3)	52.80	0	400	1000 mb
(II-4)	53.596	±0.115	2x170	750 mb
(11-5)	54.40	0	400	400 mb
(II-6)	54.94	0	400	250 mb
(II-7)	55.50	0	330	150 mb
(II-8)	56.02	0	270	90 mb
	56.67		330	
(II-)	183.31	-17.0	4000	[11 mm]
III-2	"	±10.0	2x3000	[6.8 mm]
(II-3)	"	±7.0	2x2000	[4.2 mm]
III-4	"	±4.5	2x2000	[2.4 mm]
(II-5)	"	±3.0	2x1000	[1.2 mm]
III-6	"	±1.8	2x1000	[0.6 mm]
(II-7)	"	±1.0	2x500	[0.3 mm]

Lambrigtsen

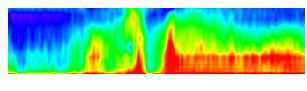
Context and Pedigree of HAMSR

- HAMSR carries the IMAS development effort to maturity
 - Dual-band T-sounding + q-sounding in single package
 - New MMIC receiver technology; Small instrument
- ATMS is also based on IMAS
 - Single-band T-sounding + q-sounding
- NAST-M implements IMAS T-sounding
 - Dual-band T-sounding No q-sounding

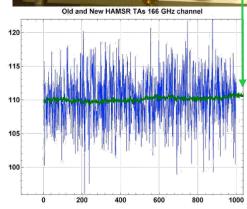
HAMSR Microwave Sounder on Global Hawk

New receiver technology

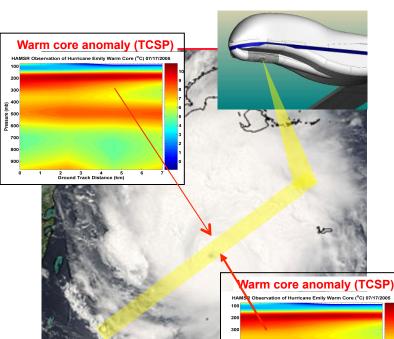
- 183 GHz receiver upgraded with LNA developed under ESTO/ACT
- Noise reduced by an order of magnitude
- Defines new state-of-the art

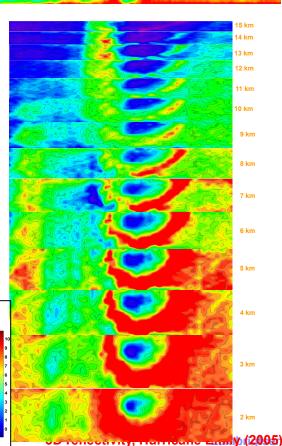

Multiple platforms

- ER-2 (CAMEX-4, TCSP)
- DC-8 (NAMMA)
- Global Hawk (GRIP, 2010)

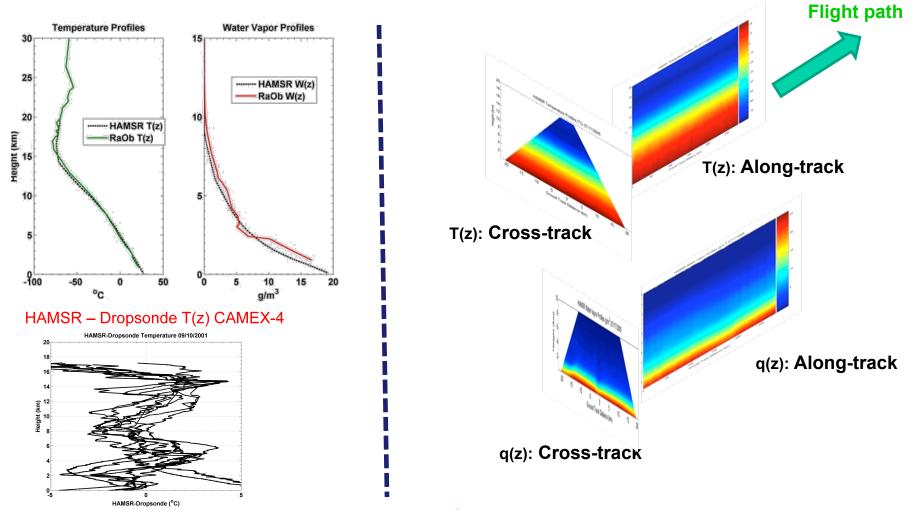


Convective structure

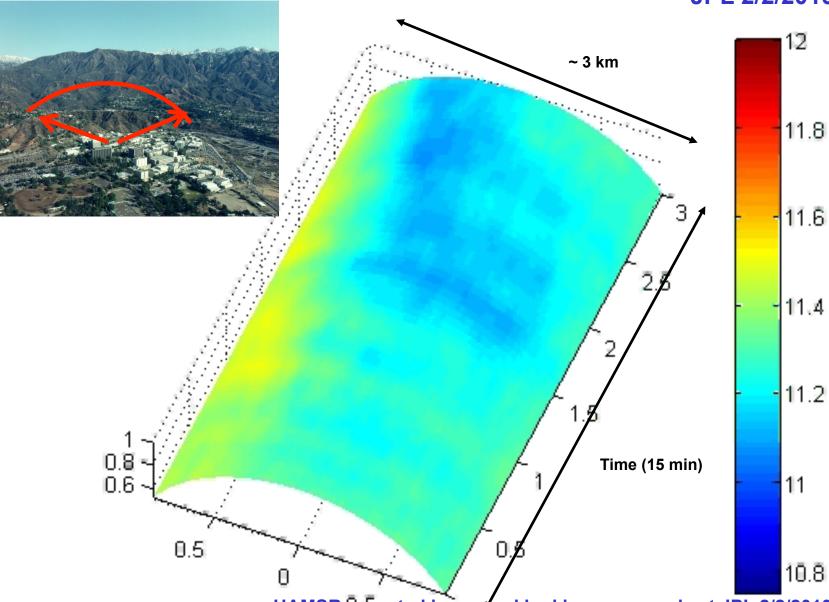

- Radar-like reflectivity
- -1 km vert.res/40 km swath
- Conv.intens., precip(z), ice(z)



Noise reduced from 2 K to 0.2 K



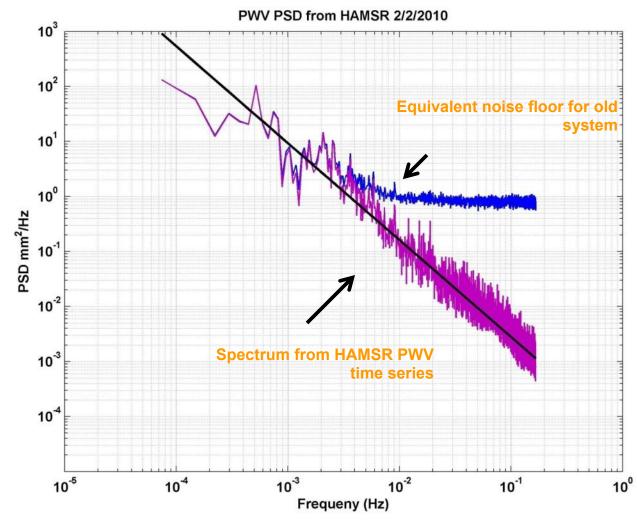
2 3 4 5 Ground Track Distance (km)


HAMSR sounding accuracy

- Retrieval of 3-D atmospheric temperature, water vapor and cloud liquid water profiles using optimal estimation inversion approach
- Good agreement with dropsonde observations

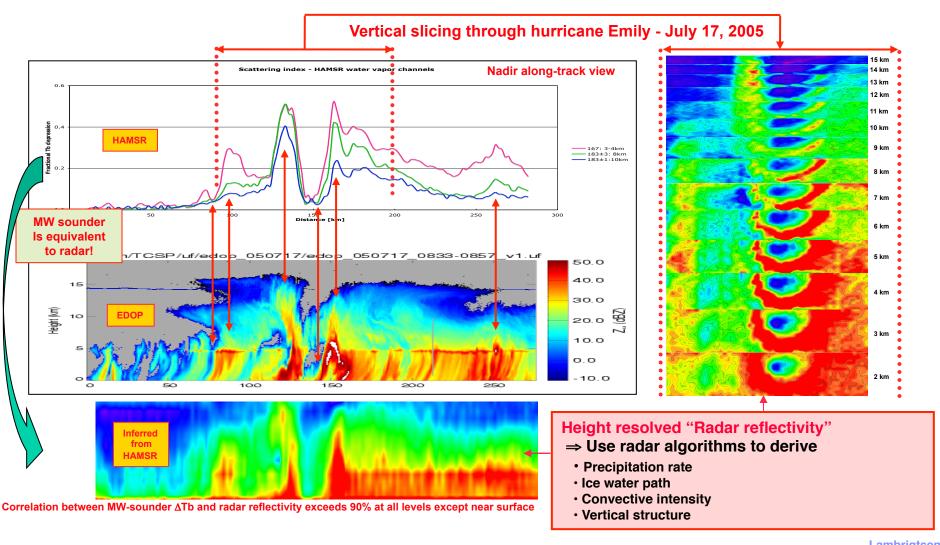
Note: Third band (118 GHz) also makes it possible to retrieve L(z)

Boundary layer sounding with HAMSR

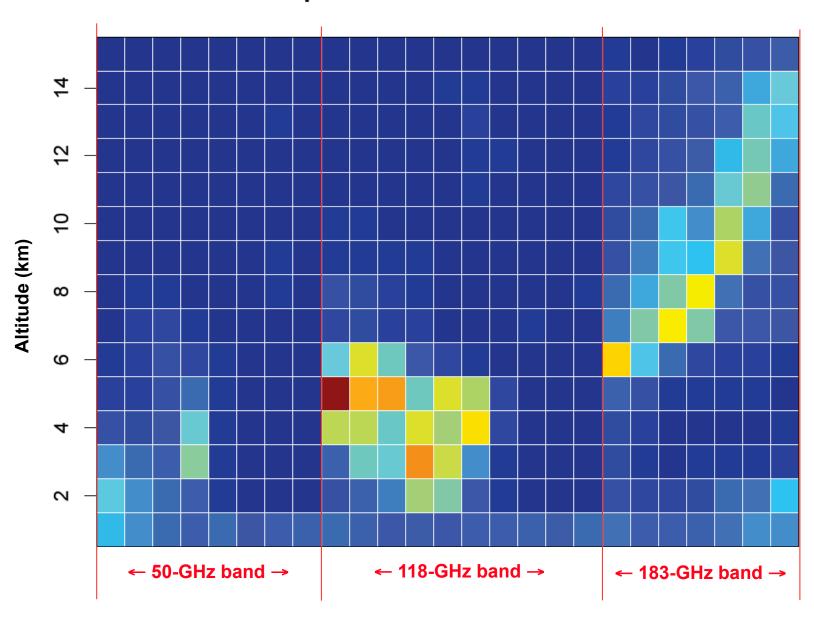


- HAMSR-operated in upward looking scan mode at JPL 2/2/2010
- Retrieved PWV time series along scan arc reveals small scale structure

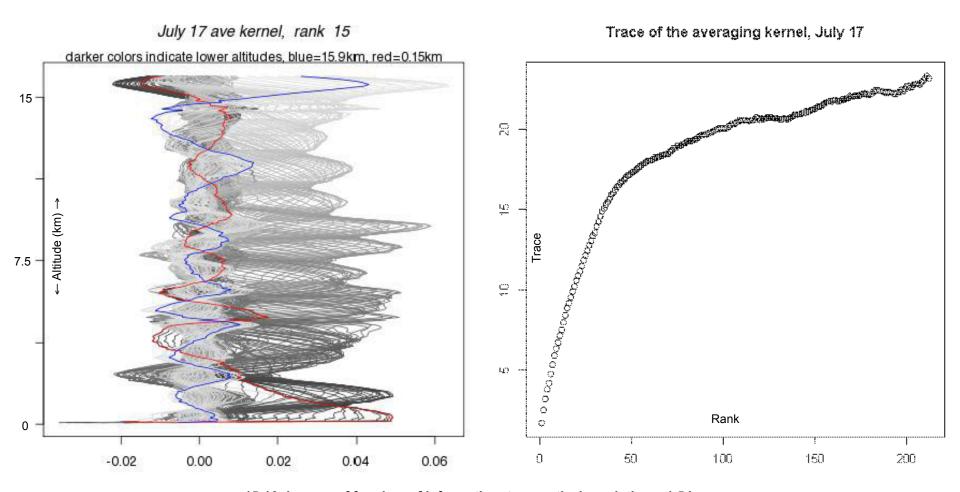
• 0.3 mm resolution brigtsen


HAMSR TPW spectrum reveals fine structure

 In upward looking mode, low noise floor enables measurement of variability on seconds to minutes time scales


A new application: Scattering profiling

Hurricane observations with MW sounder (HAMSR) compared with doppler radar (EDOP)
Observations from NASA TCSP campaign, Costa Rica, 2005

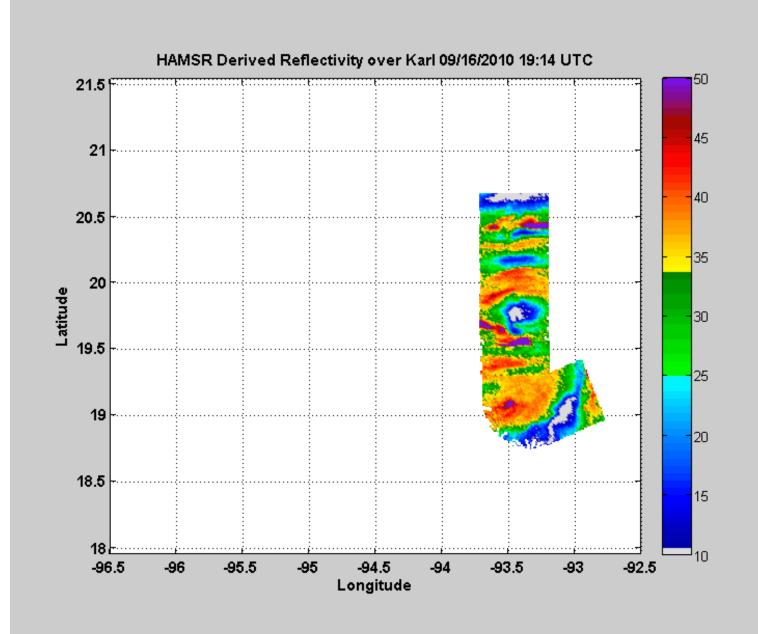

All cannels contribute information

HAMSR Variable Importance based on the Contribution to the Fit

Averaging kernels

Single flight - July 17 (Emily)

 \sim 15-16 degrees of freedom of information; true vertical resolution \sim 1.5 km


Retrieval accuracy

Several empirical models investigated:

Linear regression, Random forest, Projection pursuit regression, Perceptron neural network, RBF neural network

The winner: Random forest 6 Full Results differ little if Training data: Emily/July 17 + Dennis/July 6 by 3 training data are Test case: Dennis/July 9 averaged to simulate coarser α spatial resolution This means the empirical model derived from aircraft data can be applied Reflectivity error (dBZ) to satellite data 9 4 Scattering = "signal" (S) T/q variability = "noise" (N) က S/N-ratio is low @ low alt/freq S/N-ratio is high @ high alt/freq ← Altitude (km) → 2 12 14 10

Hurricane Karl, September 16, 2010

Reflectivity derived from HAMSR flying on Global Hawk UAV

20 consecutive passes over eye

GEO MWS coming soon: GeoSTAR

GeoSTAR overview

Problem: How to develop a microwave sounder for geostationary orbit?

- Need: Time-continuous all-weather observations of the atmosphere
- Challenge: Achieve adequate spatial resolution from 37,000 km

Solution: Aperture-synthesis concept

- Can make a very large aperture w/out large parabolic dish antenna
- Sparse array employed to synthesize large aperture
- Spatial interferometry -> Fourier transform of Tb field
- Inverse Fourier transform on ground -> Tb field
- Bonus: No moving parts, simultaneous 2-D "synoptic" imaging

Design: Sparse array - GeoSTAR

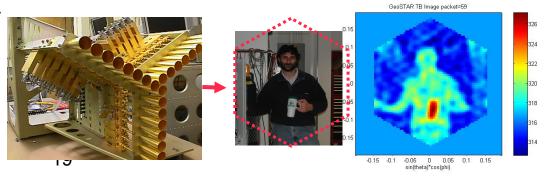
- Optimal: Y-configuration; 3 "sticks"; 100-200 elements each
- Each element = I/Q receiver, ~4λ wide (6 mm @ 183 GHz!)
- Example: 100/arm ⇒ Pixel = 50 km at nadir ≈ LEO sounders
- One "Y"-array per sounding band, interleaved

Proof of concept

- Ground-based prototype under NASA/ESTO/IIP, 2003-2006
- Performance is excellent & as predicted => Proof of concept

Risk reduction for space mission

- Further technology development under IIP, 2008-2010
- Mission design studies


"PATH" decadal-survey mission

- Precipitation and All-weather Temperature and Humidity
- Ready to start implementation ~2012

"GeoSTAR-pathfinder"

- GeoSTAR-lite
- Mission of opportunity
- Launch ~2016-18

GeoSTAR/PATH applications

<u>Hurricanes - Severe storms - Moisture flow - Hydrologic cycle - Climate</u>

Weather forecasting -Improve regional forecasts; severe storms

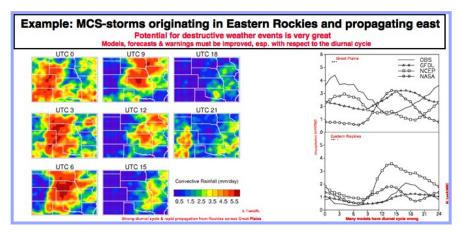
- All-weather soundings, including cloudy and stormy scenes
- Full hemispheric soundings @<50/25 km every ~ 15-30 minutes (continuous)
- "Synoptic" rapid-update soundings => Forecast error detection; 4DVAR applications

Severe-storm diagnostics -Quintessential hurricane sensor

- · Scattering signal from convection easily measurable
- Measure location, intensity & vertical structure (incl. shear) of deep convection
- Detect intensification/weakening in real time, frequently sampled (< 15 minutes)
- Measure all three phases of water: vapor, liquid, ice including rain/snow
- Use for operational analysis & in research to improve microphysics of models

Rain -Complements current capabilities

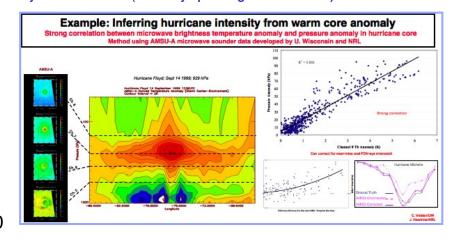
- Full hemisphere @ ≤ 25 km every 15 minutes (continuous) both can be improved
- Directly measure storm and diurnal total rainfall: predict flooding events
- · Measure snowfall, light rain, intense convective precipitation


Tropospheric wind profiling -NWP, transport applications

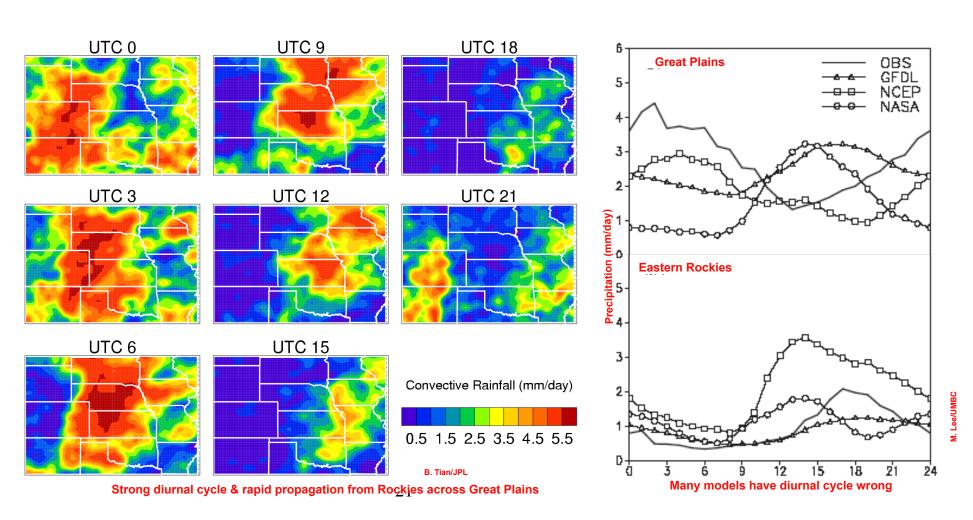
- Surface to 300 mb; very high temp.res.; in & below clouds
- Major forecast impact expected (OSSE planned) particularly for hurricanes
- Air quality applications (pollution transport)

Climate research -Hydrology cycle, climate variability

- · Stable & continuous MW observations => Long term trends in T & q and storm stats
- Fully resolved diurnal cycle: water vapor, clouds, convection
- ENSO observer: Continuous observations from "warm pool" to Pacific coast under all conditions
- "Science continuity": PATH

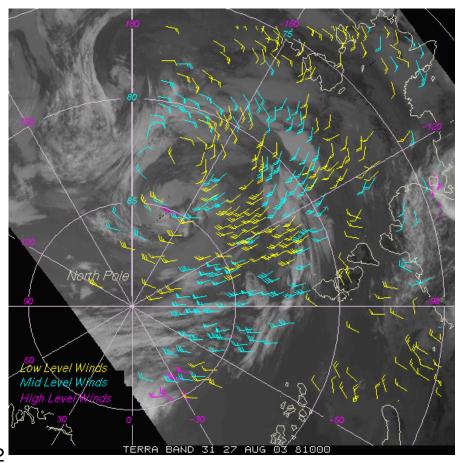

 AMSU (currently operating LEO sounders)

W120 W


aliased image

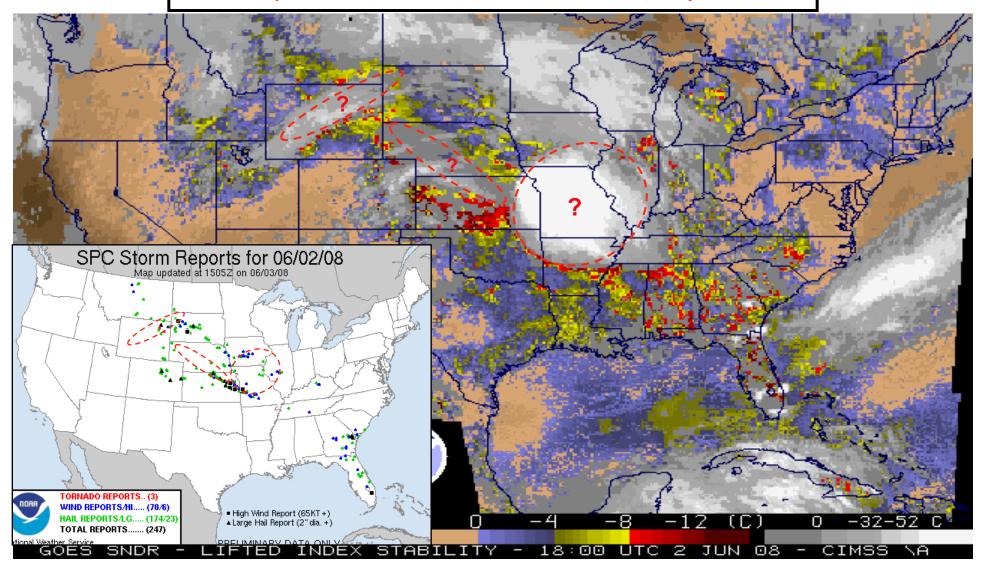
rom opposing limb

Diurnal cycle: Problem with models


In Sounding Science Workshop held in May 2009 accurate modeling of the diurnal cycle was identified as an issue

Key application: 3-D tropospheric wind

Tropospheric wind vector profiles


- Derived from moisture feature tracking
- Key parameter for improved numerical weather prediction
- Tropospheric wind (esp. at 500 mb) will have more impact on forecast accuracy than surface wind (Bob Atlas)
- Current capabilities
 - LEO satellites: MODIS
 - Polar regions only
 - Limited-accuracy water vapor profiles
 - GEO satellites: IR sounder
 - Poor sampling: clear only
 - Uncertain height assignment
 - GEO satellites: IR/Vis imager
 - Cloud tracking: cloud tops only
- GeoSTAR capabilities
 - Clear and cloudy
 - Including below clouds
 - Continuous: no time gaps
 - Applicable algorithms available
 - · UW (Velden et al.)

Example wind vectors from MODIS

Storms: What's going on below the clouds?

Current capabilities: Poorly observed; infrequently sampled; poorly modeled PATH capabilities: *All* conditions, observations *in* storms; every 15 minutes

Let's not forget about storms – They are important to boundary layer dynamics

Some thoughts

- Need to assess continuous vs. regime-sampling observational needs
- Need to consider spatial and temporal scales
- HAMSR demonstrates some valuable lessons:
 - Adding 118-GHz band adds enough info to enable full L(z) sounding
 - Just as in IR, there is more info.content in MW soundings than currently exploited
 - Upward-sounding example demonstrates that there is very high spatial variability in WV
 - · Can probably only be observed from ground or air
 - Ability to resolve sub-mm water vapor features enabled by high radiometric sensitivity
 - Enabled by new receiver technology

Lines of pursuit

- Hyperspectral MW sounders => 100's of channels
 - Increased information content
 - => increased vertical resolution
 - => higher accuracy
 - => solve for more independent parameters
 - Can be done with moderate development
 - Will be demo'd with GeoSTAR (LO tunable to any frequency)
 - Could be demo'd with HAMSR
 - FPGA/ASIC auto-correlator spectrometer for HAMSR: ~ \$1M
- Large-aperture satellite sounders => 1-5 km spatial resolution
 - Aperture synthesis (suitable for GEO/MEO, could be adapted for LEO)
 - Focal plane arrays (suitable for LEO)
- Combined active-passive methods
 - Is a "sounding radar" feasible?
- Solve surface problem
 - On-line/off-line spectral sampling near weak lines
 - Combine imagers & sounders to solve for surface emissivity
 - SSM/IS is an example, but conical scanners are problematic
- Algorithm development
 - Data fusion: low-res MW + high-res "other
 - Optimal estimation: error & information characterization