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1. Imager Cloud Retrieval Overview



Bidirectional reflectance (R)

conservative scattering, R=R((1-2)7)
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MODTRAN, absorption transmittance only

—— Solar irradiance x Transmittance (MLS, 2 km -> TOA)
—— Solar irradiance
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Cloud optical vs. microphysical properties?

For homogeneous cloud and Mie scattering (water droplets), 3 optical
variables can be reduced to 1 optical & 1 microphysical:

R, = R(t,.w,,.g,) Bm) R,~ R(7,.r,)
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Cloud optical vs. microphysical properties?

For homogeneous cloud and Mie scattering (water droplets), 3 optical
variables can be reduced to 1 optical & 1 microphysical:

R,= R(t,.@,,.g,) EEE) R, ~ R(t%,re{
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Residual example for 5 wavelength retrieval: 0.75, 1.0, 1.2, 1.6, 2.1 ym

obvious causes for the

r, discrepancy “found wanting”
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Figure 3 Isopleths of the residual in r, 7 spacq
measured spectral reflectances).
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Figure 5 Histogram plot of the frequency distribution of
inferred T (upper) from one day’s flight data and (lower)
frequency distribution of r from cloud physics (in-situ) in-
struments.




Nakajima & King (1990)
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FI1G. 2. Theoretical relationships between the reflection function
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2. Capabilities: Examples from MODIS



MODIS Cloud Product Overview

Main pixel-level products (Level-2), Collection 5

» Cloud mask. U. Wisconsin/CIMSS. 1km, 48-bit mask/11 spectral tests, clear
Sky confidence given in 4 levels

» Cloud top properties: pressure, temperature, effective emissivity. U.
Wisconsin/CIMSS. 5§ km, CO, slicing high clouds, 11 um for low clouds

» Cloud optical & microphysical properties: optical thickness, effective particle
size, water path, thermodynamic phase. NASA GSFC

- 1 km, 2-channel solar reflectance algorithm. Standard retrievals are non-
absorbing band (depends on surface type) + 1.6, 2.1, 3.7 um

1 i

- 2.1 um combination is the “primary” retrieval r, (used in L3 aggregations)

Retrieval uncertainties

Various QA including, “Clear Sky Restoral” (CSR): Used to help eliminate
cloudy pixels not suitable for retrievals or incorrectly identified cloudy pixels
spatial (edge removal, use of 260m bands over water surfaces, and

spectral tests).



Monthly Mean Cloud Optical Thickness & Effective Radius

April 2005, Aqua Collection 5

Monthly Mean Cloud 7
(MYDO6 Cloud Mask)
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Monthly Mean r, (MYDO0G6)
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Monthly Mean Cloud Fraction & Effective Radius
April 2005, Aqua Collection 5

Monthly Mean Cloud
Fraction (MYD35 Cloud
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Monthly Mean Cloud Effective Radius: 2.1 vs. 3.7 ym
(Terra MODIS April 2005, C6 Test3, L3 unweighted means, liquid water clouds)

ro(2.1um)
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Example Liquid Water Path: MODIS vs. AMSR-E
(from Borg and Bennartz, 2007; see also dry bias Greenwald 2007,

Horvath and Genteman, 2007)
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3. Issues: Examples from MODIS

« What do we mean by a “cloudy pixel” and why does it matter?
Rationale for “Clear Sky Restoral” and impact on retrievals



Granule Example — Peru/Chile Sc (Terra, 18 July 2001)

MODO06 L2.A2001199.1530.051.20101 1\5 4049.haf
Terra MODIS Cloud_Effective_Radius - M0O6SDS
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What Do We Mean by a Cloud Mask?
A pixel
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What Do We Mean by a Cloud Mask?

Overcast |
Cloud Mask

Partly Cl_oudy

—— Clear Sky Mask




What Do We Mean by a Cloud Mask?

Most cloud masks are Clear Sky Masks

MODIS

Cloud Mask |

(likelihood of —]
‘not clear”)




Another Issue: What is a Pixel?

Sensor

T

scan direction

“Pixels” (individual
observations) overlap
substantially in the across-
track direction

“‘instantaneous FOV” at t “instantaneous FOV” at t=t+Af, e

Moral of this story:

(1) “Pixels” are rarely distinct elements.

(2) It is dangerous to treat non-clear pixels from detection
algorithms as “cloudy”.



CLASIC MAS vs. MODIS Cloud Fraction Comparison

Effect of imager spatial resolution for low cloud portion of track:

MAS cloud fraction (50m) = 20.1%
MODIS cloud fraction (MYD35 1km cloud mask) = 47%

(see Ackerman et al, JAOT, 2007 for other lidar comparisons)



Granule Example — Peru/Chile Sc (Terra, 18 July 2001)
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Difference: C5 run w/out Clear Sky Restoral - C5
Retrieval Fraction, Terra 8-Day Aggregation, 30 March - 6 April 2005
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Number of Retrieved Pixels
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Sensitivity to Clear Sky Restoral: Histograms
Optical Thickness, liquid water clouds (April 2005)
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Number of Retrieved Pixels
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Sensitivity to Clear Sky Restoral: Histograms
Optical Thickness, liquid water clouds (April 2005)
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BL Phase In Broken Cloud Regimes (B. Holz)

* Analysis: Fraction of non-tropical low clouds detected by CALIOP that are/have
ice (early Yong Hu algorithm, applied before off-nadir pointing)

* Restricted to: Height<3km, £30-70° latitude, isolated clouds w/spatial scales <20
km (max diameter from MODIS)
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BL Phase In Broken Cloud Regimes, cont. (B. Holz)

Feb 2007 Horizontal Ice Feb2007-V3
9QM — :




Summary: Cloud Retrieval Fraction and Issues

Cloud Detection/Cloud Fraction: lll-defined but nevertheless
impacts those pixels considered for optical/microphysical
retrievals, and a useful metric for trend studies if consistent
instruments/algorithms are available.

MODIS “Clear Sky Restoral” Algorithm
« As expected:

— algorithm removes more liquid than ice cloud (not shown)
from the retrieval space

— algorithm increases mean 1 as expected (e.g., eliminates
broken cloud or aerosol portion of PDF)

* Not expected:

— algorithm does not in general have a significant effect on
mean r, !

« Cloud Phase: Midlatitude BL clouds w/ice appear relatively
common in broken regimes.



3. Issues: Examples from MODIS

* Analysis of effective radius sensitivity to choice of spectral bands



MODIS Aqua, Collection 5
9 September 2005
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r, Differences Correlated w/250m spatial inhomogeneties
Global Ocean, £60°, April 2005, Terra (Zhibo Zhang, et al.)

30 30
25 25
20 20
15 15
10 10
5 5
0 ) 0.0 0
0.01 0.10 1.00 0.01
Sub-Pixel Inhomogeneity Index
1.0
g 0.8
€
3
- 0.6
Qo
kﬂ)
a3 0.4
3
©
= 0.2
~
20~ : 3J0.0
0.01 0.10 1.00

Sub-Pixel Inhomogeneity Index

0.10

Sub-Pixel Inhomogeneity Index

ro(3.7um) - r,(2.1um) [um]

1.0

xapul ‘Bowoy! Jo Jpd

0.0

0.01 0.10 1.00 |
Sub-Pixel Inhomogeneity Index 2

1.0 30 1.0

0.8 25 0.8
E 20

06 = 0.6
5 15

0.4 o 0.4
% 10

0.2 5 0.2

0.0 0 . 0.0

1.00 0.01 0.10 1.00

Sub-Pixel Inhomogeneity Index

o/u for
0.86 pm
50m pixels



r, Differences and Spatial Inhomogeneties:

Back-of-Envelope Example (no 3D RT)
(Zhibo Zhang, et al.)

“pixel” over dark ocean
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r, Differences and Spatial Inhomogeneties:

Back-of-Envelope Example (no 3D RT)
(Zhibo Zhang, et al.)
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r, Differences and Spatial Inhomogeneties: 3D RT Results
(Zhibo Zhang, et al.)
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Global Oceanic Low Cloud Results

* MODIS 250m cloud heterogeneity
metric (dispersion in 3x3 sq. km region)

* For metric < 0.1 (~40% of all retrievals
are less than this value): Angular
consistency in the MODIS-retrieved
cloud optical properties are within 10%
of their plane-parallel values for various
angular consistency metrics.
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Relationship Between MODIS Retrievals and CloudSat
Probability of Precipitation (Matt Lebsock et al.)
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MODIS r, Joint Distributions vs. CloudSat Precipitation
(Matt Lebsock et al.)

Non—Precipitating Precipitating
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* 1,37 appears to show less precipitation influence
e r,or or,alone can’t predict precipitation
* 1, q,€xtends beyond 30 um



Summary of Water Cloud Ar_ Results

* Global r, statistics between 1.6/2.1 and 3 7 pm retrievals are
significantly different.

— Can’t directly compare MODIS standard retrieval (2.1 um)
with AVHRR or MODIS/CERES 3.7 um derived data sets.

— Differences between these data sets are due to choice of
bands uses, not algorithmic.

— Oceanic differences correlated with absolute r, and
inhomogeneities reflectance (o/u) and precip. (Lebsock et al.,
2008; Takashi Nakajima et al., 2010)

— But drizzle/precip may also be correlated with clouds
Inhomogeneities. Which is the tail and which is the dog
(both)?

— Some/more significant positive (2.1-3.7) bias with VZA
(beyond pixel level uncertainties) in broken oceanic regions.

« Pursuing MODOG retrievals from marine BL LES runs




4. Summary & Discussion

All retrievals (w/out exception) have issues with portions of the
retrieval pdf space.

Spatial Resolution is a key issue for BL cloud studies.

Issues related to broken clouds and/or strong inhomogeneities/
precip:

Inability to retrieve cloud amount and physical cloud information
(temperature/height biases, optical property “failed” retrievals)

Interpretation of large r, and large Ar,from different spectral
channels

Vertical (non-adiabatic) as well as horizontal structure

Deviations from plane-parallel models with view angle
(instantaneous differences may be large, but aggregated statistics
appear less so)

Significant presence of ice in midlatitude low clouds. Must have the
ability to detect ice and discern mixed phase to (a) understand BL
energy budget and affect on dynamics/microphysics, (b) have any
hope of understanding retrieval uncertainties.



Summary & Discussion, cont.

e Cloud processes occur across the gamut of spatial/temporal
scales, are complex, and require a full understanding of cloud
properties (in addition to aerosol and dynamic/thermodynamic
properties, model analysis, ancillary data, etc.).

- Synergistic sensor approaches are required (e.g., A-Train, ACE)

— To maintain/monitor climatologies (trends), need to continue to
invest in instruments that can maintain data continuity.

- Not everything can be learned from satellites. Strong in situ and
modeling efforts are necessary. Inability to retrieve cloud amount

and physical cloud information (temperature/height biases, optical
property “failed” retrievals)

« ACEBL

- Imager: narrow swath (selected high res bands), multiple views,
wide swath Solar reflectance + IR (w/spectral heritage)

- Polarimeter
— Active: Radar (dual frequ.), HSRL



