Boundary Layer Cloud Characterization with Passive Satellite Imagers: Capabilities, Limitations, Future Needs

Steve Platnick¹, Zhibo Zhang^{1,2}, Paul Hubanks^{1,3}, Bob Holz⁴, Robert Pincus⁵, Steve Ackerman⁴, Brent Maddux⁴, et al.

¹NASA GSFC, ²UMBC/GEST, ³Wyle, ⁴U. Wisconsin/CIMSS, ⁵CIRES/CU

Innovative Satellite Observations to Characterize the Cloudy Boundary Layer Keck Institute for Space Studies, Cal Tech 21-24 September 2010

Outline

MODIS true-color daily composite

- 1. Imager cloud retrieval overview
- 2. Examples from MODIS: Capabilities
- 3. Examples from MODIS: Issues
 - What do we mean by a "cloudy pixel" and why does it matter?
 - Effective radius sensitivity to choice of spectral bands
 - Geometric sensitivities/biases
 - Clouds/BL height
 - Trend detection
- 4. Future needs and discussion

1. Imager Cloud Retrieval Overview

Water Cloud Reflectance: $R = R (\tau, g, \varpi_0, \text{geometry})$

conservative scattering, $R \approx R((1-g)\tau)$ reflectance vs. $1 - \overline{\omega}_{0} R \approx R(1 - \overline{\omega}_{0})$ 1.0 μ =0.65, μ =0.85, azimuth avg Bidirectional reflectance (R) $1 - \varpi_0 = 0$ $1 - \varpi_0 = 0$ g = 0.850.8 g = 0.85 $1 - \varpi_0 = 0.006$ 0.6 = 0.86 = 0.87 $1 - \varpi_0 = 0.02$ 0.4 $1 - \varpi_0 = 0.1$ 0.2 0.0 10 20 30 40 50 0 60 Optical thickness (τ) Optical thickness (τ)

MODIS nominal solar reflectance band locations

 general purpose window bands (land, aerosol, clouds)

Cloud optical vs. microphysical properties?

For <u>homogeneous cloud</u> and Mie scattering (water droplets), 3 optical variables can be reduced to 1 optical & 1 microphysical:

$$R_{\lambda} = R(\tau_{\lambda}, \varpi_{0,\lambda}, g_{\lambda}) \implies R_{\lambda} \approx R(\tau_{\lambda_{0}}, r_{e})$$

$$r_{e} = \frac{\int_{0}^{\infty} r^{3}n(r)dr}{\int_{0}^{\infty} r^{2}n(r)dr} = \frac{3}{4} \frac{\langle V \rangle}{\langle A_{cs} \rangle}$$

$$WP = \frac{2}{3} \tau r_e$$

Cloud optical vs. microphysical properties?

For <u>homogeneous cloud</u> and Mie scattering (water droplets), 3 optical variables can be reduced to 1 optical & 1 microphysical:

$$R_{\lambda} = R(\tau_{\lambda}, \varpi_{0,\lambda}, g_{\lambda}) \implies R_{\lambda} \approx R(\tau_{\lambda_{0}}, r_{e})$$
wave or more generally $r_{e} = \int_{0}^{\infty} r^{3}n(r)dr$

$$r_{e} = \int_{0}^{\infty} r^{2}n(r)dr$$

$$= \frac{3}{4} \frac{\langle V \rangle}{\langle A_{cs} \rangle}$$

$$n(r)dr$$

$$Column-integrated quantities$$

$$WP = \frac{2}{3}\tau r_{e}$$

$$local parameter in general r_{e}=r_{e}(x,y,z)$$

Nakajima & King (1990)

FIG. 2. Theoretical relationships between the reflection function at 0.75 and 2.16 μ m for various values of the cloud optical thickness (at $\lambda = 0.75 \ \mu$ m) and effective particle radius for the case when θ_0 = 45.7°, $\theta = 28.0°$ and $\phi = 63.9°$. Data from measurements above marine stratocumulus clouds during FIRE are superimposed on the figure (10 July 1987).

2. Capabilities: Examples from MODIS

MODIS Cloud Product Overview Main pixel-level products (Level-2), Collection 5

- <u>Cloud mask</u>. U. Wisconsin/CIMSS. 1km, 48-bit mask/11 spectral tests, clear sky confidence given in 4 levels
- <u>Cloud top properties</u>: pressure, temperature, effective emissivity. U.
 Wisconsin/CIMSS. 5 km, CO₂ slicing high clouds, 11 μm for low clouds
- <u>Cloud optical & microphysical properties</u>: optical thickness, effective particle size, water path, thermodynamic phase. NASA GSFC
 - 1 km, 2-channel solar reflectance algorithm. Standard retrievals are nonabsorbing band (depends on surface type) + 1.6, 2.1, 3.7 μm
 - 1 t, 3 r_e retrievals
 - 2.1 μ m combination is the "primary" retrieval r_e (used in L3 aggregations)
 - Retrieval uncertainties
 - Various QA including, "Clear Sky Restoral" (CSR): Used to help eliminate cloudy pixels not suitable for retrievals or incorrectly identified cloudy pixels spatial (edge removal, use of 250m bands over water surfaces, and spectral tests).

Monthly Mean Cloud Optical Thickness & Effective Radius April 2005, Aqua Collection 5

Monthly Mean Cloud τ (MYD06 Cloud Mask)

"Cloud_Optical_Thickness _QA__Mean_Mean"

Cloud Effective Radius (Liquid Water)

Monthly Mean $r_{\rm e}$ (MYD06)

"Cloud_Effective_Radius_ Liquid_QA_Mean_Mean"

Monthly Mean Cloud Fraction & Effective Radius April 2005, Aqua Collection 5

Monthly Mean Cloud Fraction (MYD35 Cloud Mask)

"Cloud_Fraction_Day_ Mean_Mean"

Cloud Effective Radius (Liquid Water)

Monthly Mean $r_{\rm e}$ (MYD06)

"Cloud_Effective_Radius_ Liquid_QA_Mean_Mean"

Monthly Mean Cloud Effective Radius: 2.1 vs. 3.7 μm (Terra MODIS April 2005, C6 Test3, L3 unweighted means, liquid water clouds)

Effective radius (r_e) retrieval differences - *theoretical*

Example Liquid Water Path: MODIS vs. AMSR-E

(from Borg and Bennartz, 2007; see also dry bias Greenwald 2007, Horvath and Genteman, 2007)

Adiabatic cloud $W = \frac{5}{9}\rho_L \tau r_{eff}$ Vert. homog. cloud $W = \frac{2}{2}\rho_L \tau r_{eff}$ 250 (b) BIAS : 0.7 [g/m²] 200 200 RMSE : 24.4 [g/m²] _WP NIR [g/m²] -WP NIR [g/m²] Global comparison with CORR : 0.89 150 150 N 9069 microwave data show excellent agreement of LWP for stratiform 0 150 LWP MW [g/m²] 50 100 150 200 250 200 250 50 100 LWP MW [g/m²] marine BL clouds (d)20 30 No indication 18 R"[mu] Fau [1] of systematic errors for marine BL clouds 100 150 200 250 50 100 150 200 250 50 LWP MW [g/m²] LWP MW [g/m²]

3. Issues: Examples from MODIS

- What do we mean by a "cloudy pixel" and why does it matter? Rationale for "Clear Sky Restoral" and impact on retrievals
- Analysis of effective radius sensitivity to choice of spectral bands
- Geometric sensitivities/biases
- BL Cloud-Top Pressure: sensitivity to lapse rate
- Trend detection

Granule Example – Peru/Chile Sc (Terra, 18 July 2001)

What Do We Mean by a Cloud Mask?

A pixel

What Do We Mean by a Cloud Mask?

						Overcast Cloud Mask		
			Clo	ud				
	Partly Cloudy							
	Cle	ar						
Cl	ear Sk	y Mask						
								1

What Do We Mean by a Cloud Mask? Most cloud masks are Clear Sky Masks

Another Issue: What is a Pixel?

CLASIC MAS vs. MODIS Cloud Fraction Comparison

Effect of imager spatial resolution for low cloud portion of track: MAS cloud fraction (50m) = **20.1%** MODIS cloud fraction (MYD35 1km cloud mask) = **47%**

(see Ackerman et al, JAOT, 2007 for other lidar comparisons)

Granule Example – Peru/Chile Sc (Terra, 18 July 2001)

Difference: C5 run w/out Clear Sky Restoral - C5 Retrieval Fraction, Terra 8-Day Aggregation, 30 March - 6 April 2005

Sensitivity to Clear Sky Restoral: Histograms Optical Thickness, liquid water clouds (April 2005)

Peru Sc (10S–20S, 70W–85W)

Tropical Pacific (±25°)

Sensitivity to Clear Sky Restoral: Histograms Optical Thickness, liquid water clouds (April 2005)

Peru Sc (10S–20S, 70W–85W)

Tropical Pacific (±25°)

BL Phase In Broken Cloud Regimes (B. Holz)

- <u>Analysis</u>: Fraction of non-tropical low clouds detected by CALIOP that are/have ice (early Yong Hu algorithm, applied before off-nadir pointing)
- <u>Restricted to</u>: Height<3km, ±30-70° latitude, isolated clouds w/spatial scales <20 km (max diameter from MODIS)

BL Phase In Broken Cloud Regimes, cont. (B. Holz)

Summary: Cloud Retrieval Fraction and Issues

Cloud Detection/Cloud Fraction: Ill-defined but nevertheless impacts those pixels considered for optical/microphysical retrievals, and a useful metric for trend studies if consistent instruments/algorithms are available.

MODIS "Clear Sky Restoral" Algorithm

- As expected:
 - algorithm removes more liquid than ice cloud (not shown) from the retrieval space
 - algorithm increases mean τ as expected (e.g., eliminates broken cloud or aerosol portion of PDF)
- Not expected:
 - algorithm does not in general have a significant effect on mean $r_{\rm e}$!
- **Cloud Phase:** Midlatitude BL clouds w/ice appear relatively common in broken regimes.

3. Issues: Examples from MODIS

- What do we mean by a "cloudy pixel" and why does it matter? Rationale for "Clear Sky Restoral" and impact on retrievals
- Analysis of effective radius sensitivity to choice of spectral bands
- Geometric sensitivities/biases
- BL Cloud-Top Pressure: sensitivity to lapse rate
- Trend detection

MODIS Aqua, Collection 5 9 September 2005

*r*_e Differences Correlated w/250m spatial inhomogeneties Global Ocean, ±60°, April 2005, Terra (Zhibo Zhang, et al.)

r_e Differences and Spatial Inhomogeneties: Back-of-Envelope Example (no 3D RT) (Zhibo Zhang, et al.)

r_e Differences and Spatial Inhomogeneties: Back-of-Envelope Example (no 3D RT) (Zhibo Zhang, et al.)

*r*_e Differences and Spatial Inhomogeneties: 3D RT Results (Zhibo Zhang, et al.)

Example, RICO region October 29, 2003 (Di Girolamo et al.)

MISR observations DISORT Simulations from MODIS retrievals

Global Oceanic Low Cloud Results

- MODIS 250m cloud heterogeneity metric (dispersion in 3x3 sq. km region)
- For metric < 0.1 (~40% of all retrievals are less than this value): Angular consistency in the MODIS-retrieved cloud optical properties are within 10% of their plane-parallel values for various angular consistency metrics.

Relationship Between MODIS Retrievals and CloudSat Probability of Precipitation (Matt Lebsock et al.)

Three MODIS parameters are related to the POP:

MODIS r_e Joint Distributions vs. CloudSat Precipitation (Matt Lebsock et al.)

- r_{e.3.7} appears to show less precipitation influence
- r_e or δr_e alone can't predict precipitation
- $r_{e,2.1}$ extends beyond 30 μ m

Summary of Water Cloud $\Delta r_{\rm e}$ Results

- Global r_e statistics between 1.6/2.1 and 3 7 µm retrievals are significantly different.
 - <u>Can't directly compare MODIS standard retrieval (2.1 μm)</u> with AVHRR or MODIS/CERES 3.7 μm derived data sets.
 - Differences between these data sets are due to choice of bands uses, not algorithmic.
 - Oceanic differences correlated with absolute r_e and inhomogeneities reflectance (σ/μ) and precip. (Lebsock et al., 2008; Takashi Nakajima et al., 2010)
 - But drizzle/precip may also be correlated with clouds inhomogeneities. Which is the tail and which is the dog (both)?
 - Some/more significant positive (2.1–3.7) bias with VZA (beyond pixel level uncertainties) in broken oceanic regions.
- Pursuing MOD06 retrievals from marine BL LES runs

4. Summary & Discussion

- All retrievals (w/out exception) have issues with portions of the retrieval pdf space.
- Spatial Resolution is a key issue for BL cloud studies.
- Issues related to broken clouds and/or strong inhomogeneities/ precip:
 - Inability to retrieve cloud amount and physical cloud information (temperature/height biases, optical property "failed" retrievals)
 - Interpretation of large $r_{\rm e}$ and large $\Delta r_{\rm e}$ from different spectral channels
 - Vertical (non-adiabatic) as well as horizontal structure
 - Deviations from plane-parallel models with view angle (instantaneous differences may be large, but aggregated statistics appear less so)
 - Significant presence of ice in midlatitude low clouds. Must have the ability to detect ice and discern mixed phase to (a) understand BL energy budget and affect on dynamics/microphysics, (b) have any hope of understanding retrieval uncertainties.

Summary & Discussion, cont.

- Cloud processes occur across the gamut of spatial/temporal scales, are complex, and require a full understanding of cloud properties (in addition to aerosol and dynamic/thermodynamic properties, model analysis, ancillary data, etc.).
 - Synergistic sensor approaches are required (e.g., A-Train, ACE)
 - To maintain/monitor climatologies (trends), need to continue to invest in instruments that can maintain data continuity.
 - Not everything can be learned from satellites. Strong in situ and modeling efforts are necessary. Inability to retrieve cloud amount and physical cloud information (temperature/height biases, optical property "failed" retrievals)

• ACE BL

- Imager: narrow swath (selected high res bands), multiple views, wide swath Solar reflectance + IR (w/spectral heritage)
- Polarimeter
- Active: Radar (dual frequ.), HSRL