A Combined GPS-RO and WindCam System for PBL Remote Sensing

Dong L. Wu, Anthony J. Mannucci, Feiqin Xie, Chi O. Ao, David J. Diner, and Joao P. Teixeira

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

© 2010 California Institute of Technology. Government sponsorship acknowledged.

KISS Workshop "Innovative Satellite Observations to Characterize the Cloudy Boundary Layer" September 21-24, 2010

Synergy of GPS RO and WindCam as a Passive-Technique Duo

Climate

- PBL cloud, humidity, height, and winds
- Climate monitoring (e.g., Temperature and humidity)
- Clouds dynamics and feedback processes

Weather

- Severe weather forecast (e.g. Tropical cyclone and convection)
- Dispersion of pollutants and toxic/trace gases (e.g., CO2) in PBL

Challenges for PBL remote sensing

- Technical readiness
- Vertical resolution: ~100 m
- Horizontal resolution: 100-1000 m
- Shallow layer, diurnal cycle, and global coverage

GPS RO: A Limb Active Technique for PBL Height and Humidity

GPS RO: High Vertical Resolution

- Enhanced reflectivity sensitivity to PBL inversion
- 50 Hz (~20 m) sampling

qt

- Insensitive to clouds
- Day and night

θ

Bending angle (Deg)

PBL Top

Ratnam and Basha [2010]

PBL Statistics from COSMIC (7/2006-8/2008)

Ratnam and Basha [2010]

Refractivity at 5-6 km

PDF of PBL Height (VOCALS_ 2008 vs. ECMWF_T799L91 analysis)

- Relative to radiosonde PBL top height:
 - GPS/RO: higher, wider PDF
 - ECMWF: lower, narrower PDF.
- ECMWF vertical resolution:
 - ~350m from N-bias comparisons

NOAA-NASA-NCAS High-Res PBL Analysis

Courtesy of McQueen et al. (2010)

8

NASA Micro-Pulse Lidar NETwork (MPLNET)

Penetration of COSMIC Soundings in the PBL

Penetration in the PBL

- 75% at 2 km
- 40% at 0.5 km
- 10% at the surface

Issues:

- Retrieval stops
- Loss of the signal
- Others...

Notes on GPS-RO PBL Sounding

- Useful PBL information in phase delay measurements
- Need for better height (or impact parameter) retrieval
- Need for more penetration into PBL

WindCam: A Stereo Technique for Cloud Height and Winds

Stereoscopic Viewing Technique

9 view angles at Earth surface: Nadir ±26°, ±46°,±60°, ±70°

4 bands at each angle: 446, 558, 672, 866 nm

Daylight pole-to-pole coverage with 400-km swath

275 m- 1.1 km resolution

7 minutes to observe each scene at all 9 angles

Global data since March 2000

MISR High-Resolution Cloud Top Height and Winds

MISR Low Cloud Cover and response to ENSO

Courtesy of Jae N. Lee

Meridional Winds

MISR (0-3 km)

NCEP/NCAR reanalysis (0-3 km)

Courtesy of Jae N. Lee

Highresolution cross-track winds

Credit: K. Mueller, JPL

PBL Height-Wind Relationship

۲

٠

Courtesy of Matt Scholes

- What is the correlation between cloud top height and the wind divergence?
- How are cellular structures related to wind convergence/divergence?
- What determine cloud height variations?

Wind Con/Divergence Background wind Relative motion

Variability of Cloud Top Heights in PBL

- How are the cloud height variations related to PBL structure?
- What are the statistics of the cloud variations, and relationships to LWP and albedo?

Courtesy of Matt Scholes

Example #1

Example #2

Clouds from Ship Tracks (Aerosol-Cloud Interactions)

Height Precision:

< 50 m

Boundary-Layer Clouds inside Tropical Cyclone's Eye

- Tangential wind speed at 1.1 km resolution
- Detailed angular rotation and structures
- Monitoring and forecasting cyclone intensity

TC Intensity vs. Inner-Core Rotation

WindCam: A Concept for Small Satellite

MISR	WindCam	Г
9 narrow angle cameras, 4 VNIR bands	1 wide angle camera, 1 red band	
View angles: Nadir, 26°, 46°, 60°, 70°	View angles: Nadir, 40°, 60°, 70°	
Resolution preserved by varying the camera focal lengths vs. angle	Resolution preserved by varying the detector sizes vs. angle	
Mass: 150 kg Power: 75 W Data rate: 7 Mbps	Mass: 17 kg Power: 23 W Data rate: <3 Mbps	
Spatial resolution: 275 m 400 km swath Global coverage - 9 days	Spatial resolution: 250 m 1000 km swath Daily global coverage from 3 platforms	

WindCam

Flight direction

Diner et al. (2008)

A Compact System: GPS/RO and WindCam

- Fit to small satellites
- No moving mechanisms

WindCam: Twin Satellite Formation

Summary for GPS RO and WindCam

Sciences and Applications

Boundary layer processes

- Cloud-climate feedback
- Aerosol-cloud interactions
- Climate monitoring
 - Moisture and temperature profiles

Weather

Tropical cyclones, dispersion of pollutants, numerical prediction

Opportunities

- International collaborations
- Multi-platforms and small-satellites

Extra

Variability of Cloudy Boundary Layer Top

Mr. Eyjafjallajökull Eruption in April 2010

Multiangle "flyover" Florida and Cuba

Dust Aerosol and Height Trajectory

Courtesy of MISR team