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Multi-Agent Transformers
Swarms of Autonomous Robots Transforming Shapes and Functions
o In-space and on-surface deployment, construction, and assembly of complex structures 

Formation flying, self-assembly, and reconfiguration of autonomous swarms for science, 
observation, and communication 

Survey on Aerial Swarm
Robotics, IEEE T-RO August 2018
S.-J. Chung, A. Paranjape, 
P. Dames, S. Shen, V. Kumar

Picture credit: Julie Castillo
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Formation Flying: the dynamic states of the satellites are coupled through a common control law via relative sensing
or communication. At least one satellite must track a desired state relative to another satellite.

The tracking control law must at the minimum depend upon the states of this other satellite
Constellations: even though specific relative positions are actively maintained, the GPS satellites constitute a 
constellation since their orbit corrections only require an individual satellite's position and velocity (state).

Formation vs Swarms
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• Distributed spacecraft 
systems can deliver a 
comparable or greater 
mission capability than 
monolithic spacecraft, but 
with significantly enhanced 
flexibility (reconfigurability, 
adaptability, scalability, and 
maintainability) and 
robustness (reliability, 
survivability).

• Dramatically reduced level of risk associated with technical faults of a single 
spacecraft or a subset of the swarm.

• The reduced spacecraft cost permits anomalous spacecraft to be discarded and 
replaced gracefully without degrading the overall system performance.

Fred Y. Hadaegh, Soon-Jo Chung, and Harish M. Manohara, “On Development of 100-Gram-Class Spacecraft 
for Swarm Applications” IEEE Systems Journal, 2016.
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Any challenges?  Precision formation control (synchronization) 7
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• Assuming that the mass of the telescope is 
proportional to D2. Consequently, the cost of a 
large monolithic space-based radar is 
proportional to D1.308 (in excellent agreement 
with 1.12 by [Stahl, OPT. ENG, 2010]

• Cost exponent of the monolithic aperture is 
much steeper than that of the proposed swarm 
array configurations. we can dramatically save 
the system cost of launching swarms of much 
smaller apertures. 

• Even if the cost of each femtosat higher, results 
indicate that there exists a break-even point 
between a monolithic telescope and a swarm 
array. 
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1/ 𝜆: impact of Wavelength of Diffraction-
Limited Performance (WDLP)

Fred Y. Hadaegh, Soon-Jo Chung, and Harish M. Manohara, “On Development of 100-Gram-Class Spacecraft for Swarm Applications” IEEE Systems Journal, 2016.
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Objective: develop a new guidance and control (G&C)  and estimation strategy that can reduce the complexity of 
controlling thousands of small satellites for distributed sensing and autonomous construction in space.

The G&C technologies should simultaneously address 1) such an enormous number of spacecraft in swarms; 2) 
relatively modest control, sensing, and communication capabilities of smallsats; and 3) the complex 6-DOF 
motions governed by gravity field and various disturbances and their impact on coupled motions. 

T-RO Survey
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• Swarm: a collection of hundreds to thousands of spacecraft
maximize the benefit of the massively distributed spacecraft architecture.

• Femtosat: a 100-gram-class spacecraft
• In contrast with Cubesats & PCBSat, and the passive silicon-chip spacecraft, 

SWIFT represents a “fully functional” 100-gram satellite built on novel 3-D 
silicon wafer fabrication and integration techniques.  

• Each femtosat can be actively controlled in all six degrees of freedom (6DOF) 
such that a desirable, highly reconfigurable shape emerges from the 
interactions among spacecraft and between the spacecraft and the 
environment. 

Fred Y. Hadaegh, Soon-Jo Chung, and Harish M. Manohara,
“On Development of  100-Gram-Class Spacecraft for Swarm 
Applications” IEEE Systems Journal, 2016.



• Objective: Minimize the total fuel used by all of the 
spacecraft to create a desired shape

• Constraints
– Dynamics (nonlinear with J2):
– Maximum allowable acceleration:
– Collision avoidance:
– Initial and terminal states:
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Real-time Algorithm & Decentralized Comm./Comp. 

Morgan, Chung, Hadaegh, "Decentralized Model Predictive Control of Swarms of Spacecraft Using Sequential Convex 
Programming," Journal of Guidance, Control, & Dynamics, 2014
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Energy Matched J2 Invariance Drift Rate: 0.0076 m/orbit (3 orders of magnitude better)

D. Morgan, et al. “Swarm-Keeping Strategies for Spacecraft under J2 and Atmospheric Drag Perturbations,” J.Guidance, Control, and Dynamics, 2012
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Additional MPC Constraints

Target Assignment Problem:
(Distributed Auction Algorithm)
Given
Find

• D. Morgan, G. Subramanian, S.-J. Chung, F. Y. Hadaegh, "Swarm Assignment and Trajectory Optimization Using 
Variable-Swarm, Distributed Auction Assignment and Model Predictive Control," International Journal of Robotics 
Research, 2016. 2015 AIAA Guidance, Navigation, and Control (GNC) Conference Best Paper.

• J. Yu, S.-J. Chung, P.G. Voulgaris, “Target Assignment in Robotic Networks: Distance Optimality Guarantees and 
Hierarchical Strategies,” IEEE Trans. on Automatic Control, 60(2):327-341, 2015.
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Morgan, Subramanian, Chung, Hadaegh, "Swarm Assignment and Trajectory Optimization 
Using Variable-Swarm, Distributed Auction Assignment and Model Predictive Control,"The 
International Journal of Robotics Research, 2016.



JPL-CAST Swarm Project & NSTRF (Fred Hadaegh)
JPL KISS R&TD (M. Quadrelli, R. Hodges)
JPL R&TD on Small Body (I. Nesnas, S. Bhaskaran)
JPL 3x Autonomy (K. Barltrop, L. Fesq)
Mars Helicopter (M. Aung, F. Hadaegh)
NASA CIF Mars Distributed Gliders (S. Bandyopadhyay)

CAST Space Robotics Lab
(Caltech’s Spacecraft Simulation Facility)
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S. Bandyopadhyay, F. Baldini, R. Foust, K. Kim, S.-J. Chung, A. Rahmani, J.-P. de la Croix, F. Y. Hadaegh, Fast Motion Planning for Agile 
Autonomous Vehicles in Cluttered Environments, JPL Topical R&TD 2015-2017.

Spherical Expansion Step SCP Step

SE-SCP solution approach has 2 steps:

Explore: Spherical Expansion

Optimize: Sequential Convex Programming
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Large-Scale Swarm of Autonomous Agents," IEEE Transactions on Robotics, 2017
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Probabilistic Guidance of a Swarm Deployed
from the Back Shell of the Mars Spacecraft

with S. Bandyopadhyay, J.-P. de la Croix, D. Bayard, I. Nesnaz, and F. Y. Hadaegh,

Objectives: To provide a guidance algorithm for 

a swarm of assets deployed from the back shell 

of the Mars spacecraft, so that:

• During descent, the swarm simultaneously 

measures temperature and pressure profiles 

over a large volume of the Martian atmosphere 

• On landing, the swarm establishes a very-large 

(~100km2), distributed network of sensors on 

the Martian surface for long-term in-situ 

measurements and observations

Benefits: Large number (10ଶ − 10ଷs) of long-

term in-situ measurements for studying the 

spatiotemporal variations of the Martian 

atmosphere at significantly less cost.
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Alirez Ramezani, Soon-Jo Chung, and Seth Hutchinson, "A Biomimetic Robotic Platform to Study Flight Specializations of 
Bats," Science Robotics (AAAS), vol. 2, no. 3, eaal2505, February 2017. Cover Article



Autonomous Small Body 
Mapping and Spacecraft 

Navigation

Acknowledgement: JPL Office Chief Technologist Fred Y. Hadaegh



Phase of the Rosetta Mission

25
F.Baldini, A.Harvard, S.J.Chung, I.Nesnas, S.Bhaskaran

Structure From 
Motion 
Algorithm with 
Optimization



Alexei Harvard: Realtime Swarm Localization 
and 3D Mapping
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● Created and used existing GPU implementations to accelerate 
feature detection/matching/3D processing.

Post-processed dense cloud

● Scale ambiguity: Use inter-drone communication 
through varying RF bands to obtain range and velocity 
information via radio interferometry and TOF 
measurements.  Can obtain relative velocities through 
doppler shifts.

To analyze and implement on board image-based localization and 3D 
reconstruction for use with navigation and coverage determination.

● Standard reconstructions work by creating maps of 3D points 
and localizing through find correspondences and solving the PnP 
problem.

● In space, a pure rotation of an orbiting satellite would cause 
issues since the bearings of the 2D points would have very small 
relative angles. 

● Proposed solution is to do a mixed 2D-3D mapping.



With Ryan Alimo (JPL), Vincenzo Capuano, Kyunam Kim (Caltech)

Relative Pose Estimation between Spacecraft Swarms
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- Couple of hundreds images,

- Distance of 80 to 120 kilometers,

- Dataset with random noise,

- Shadows decrease visibility.

Monocular Vision-based Navigation using Image 
Moments of Polygonal Features (in progress). 

Feature-based localization for Robust model-based pose estimation of uncooperative 
spacecraft from monocular images (Alimo et al. 2018, Capuano et al 2019).

• Dealing with more realistic data including 
shadows, noise, and varying illumination 
conditions for online pose estimation of 
spacecraft and asteroids.

• Estimating the pose using small labeled 
dataset, i.e., few-shot imitation learning. 

Chaser

Target



• Autonomously Create a Very Capable Science Instruments in Space using 
Swarms (applications are limitless!)  Complexity of Autonomous GNC

•

28
Disney: Big Hero 6 (Microbots)
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(1) novel control strategies to realize such bird-like 
aerial robots; 
(2) vision-based sensing solutions;
(3) strategies for cooperative pursuit and herding. 

A. A. Paranjape, S.-
J. Chung, K. Kim, and D. 
H. Shim, "Robotic Herding 
of a Flock of Birds Using 
an Unmanned Aerial 
Vehicle," IEEE Transactions 
on Robotics, 2018
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