NASA's Near-Earth Object Program Overview Don Yeomans/JPL

The Population of Near-Earth Objects is Jet Propulsion Laboratory California Institute of Technology Made Up of Active Comets (1%) and Pasadena California Asteroids (99%)

Comets (Weak and very black icy dust balls)

- Weak collection of talcum-powder sized silicate dust
- •About 30% ices (mostly water) just below surface dust
- •Fairly recent resurfacing and few impact craters
- Some evidence that comet Tempel 1 does not have a uniform composition (i.e., more CO₂ in south)

Asteroids (run the gamut from wimpy ex-comet fluff balls to slabs of iron

- Most are shattered fragments of larger asteroids
 - Rubble rock piles like Itokawa
 - Shattered (but coherent) rock like Eros
 - Solid rock
 - Solid slabs of iron like Meteor crater object

History of Known NEO Population

2010

Earth Crossing

Outside Earth's Orbit

Known

- 500,000 minor planets
- 7100 NEOs
- ~1100 PHOs

New Survey Will Likely Find

- 25,000+ NEOs (> 140m)
- 5,000+ PHOs

Scott Manley Armagh Observatory

NASA's Current NEO Search Surveys

Spacewatch Tucson, AZ

NASA's NEO Observations Program run by Lindley Johnson (SMD) Catalina Sky Survey Tucson AZ & Australia

NEO Program Office @ JPL

- Program coordination
- Automated SENTRY http://neo.jpl.nasa.gov/ Minor Planet Center (MPC)
- IAU sanctioned
- Discovery Clearinghouse
- Initial Orbit Determination

NASA NEO Survey Discoveries

NASA goal is to discover 90% of NEAs larger than 1 km. We've got >87% so far...

The next generation survey will have the goal of 90% of 140m+ objects

Less Than 1% of 30 meter sized NEOs Discovered to Date

Radars and Satellite Observations Help Characterize NEOs

- □ Planetary Radars (Arecibo, Goldstone)
 - □ Provides dramatic improvements in the orbits & position predictions of NEOs
 - ☐ Often provides sizes, high resolution shapes, rotation states, roughness
 - □ Detects binaries & triple systems
- ☐ Hubble (rough sizes/shapes, rotation rates, spectroscopy)
- ☐ Warm-Spitzer (characterization in two IR bands, spectra)
- WISE (NEO discoveries, size and albedo determinations, etc.)
- > 104 NEAs and 15 comets to date

Asteroid binary 1999 KW4

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Next Generation Surveys

Space-Based IR Telescope Would Be Extremely Efficient for Discovering NEOs.

An IR telescope in a Venuslike orbit is far more efficient at finding NEOs:

- •Better sky coverage because of geometry and issues relating to weather, background confusion, day/night, phase effects
- Most of energy emitted from NEOs is in mid-IR
- •IR allows better NEO size determinations
- Space IR and ground-based visible telescopes are complementary

Space-Based IR Telescope(s)

- Space-based IR is a more efficient discovery system. 2005: Congress asked NASA to find 90% of all NEOs > 140 meters by the end of 2020.
- Many decades Using current ground-based optical telescopes
- 17-40 years Next gen. optical surveys (Pan-STARRS/LSST)
- 6 years 50 cm IR telescope in Venus-like orbit + Pan-STARRS
- 3 years 2 IR telescopes phased 180 degrees apart
- 1 year 60% completeness for human exploration NEO targets using 1 IR telescope. 90% completeness using 2 IR telescopes.
- IR telescope(s) in Venus-like orbits would dramatically improve catalog & hence warning times for the (most frequent) small impactors.

Proposed NEO Short Term Warning Systems

(for civil defense – not mitigation)

Most likely damaging impactor will be ~ 30 meters in diameter. Average impact interval ~ 200 years but warnings will be more frequent.

Design a system for finding these small impactors days in advance of impact.

- Frequent sky coverage is all important
- One concept design would use 4 small, (25 cm) wide field of view (20 sq. deg.), off-the-shelf ("cheap") telescopes at 2 locations that are co-aligned in pairs.
- Observe the entire accessible sky (~20,000 sq. deg.) twice each night.
- Can provide several days or more warning for ~60% of objects on final approach.
 - ~ 1 week for 50 meter objects
 - ~ 3 weeks for 140 meter objects

Communicating Risk Lessons Learned

- □ Provide authoritative, verified & trusted results (NASA/JPL, Pisa)
 □ Explain orbit and risk determination procedures in simple terms
 □ Post verified results as soon as possible
 □ Continuously inform public
- □Education process already underway
 Neo.jpl.nasa.gov, ssd.jpl.nasa.gov
 SENTRY, close approach data,
 NEO discovery metrics, ephemerides,
 risk assessment discussion

jpl.nasa.gov/Asteroidwatch)Audio/video files, blog, FAQ,Twitter, close approach widget,missions, images, recent news

NEO Program Benefits Science

 Science: NEOs are the least changed remnants of the solar system formation process

NEO Program Benefits Space Resources

- Science: NEOs are the least changed remnants of the solar system formation process
- Space Resources: Future watering holes and fueling stations in space

NEO Program Benefits Human Exploration

 Science: NEOs are the least changed remnants of the solar system formation process

 Space Resources: Future watering holes and fueling stations in space

 Inform human exploration: What targets are available and what do we need to know before sending astronauts?

NEO Program Benefits Planetary Defense

- Science: NEOs are the least changed remnants of the solar system formation process
- Space Resources: Future watering holes and fueling stations in space
- Inform human exploration: What do we need to know before sending astronauts?
- •Planetary Defense: We need to find them before they find us...

Computing and Verifying Impact Probabilities

Quick look for future close Earth approaches with relatively high Impact Probability (IP). Output from automatic orbit update process.

□ Robust IP determination useful for almost all Earth approaches. Used within on-line, automatic SENTRY system.

■Monte Carlo analysis - The last word for determining impact probabilities. Used to vet SENTRY.

JPL's SENTY NEO Risk Page

- ➤ Palermo Scale (depends upon impact energy, IP & impact proximity)
 - ➤ A Palermo Scale value > 0 is above the "background" level

	'	Objects No	t Recently C	bserved					
Object Designation	Year Range	Potential Impacts	Impact Prob. (cum.)	V _{infinity} (km/s)	H (mag)	Est. Diam. (km)	Palermo Scale (cum.)	Palermo Scale (max.)	Torino Scale (max.)
101955 1999 RQ36	2169-2199	8	7.1e-04	6.36	20.7	0.560	-1.12	-1.52	n/a
2007 VK184	2048-2057	4	3.4e-04	15.63	22.0	0.130	-1.82	-1.83	1
									4

Backup Slides

- □ "Near Earth Objects (NEOs)"- any comet or asteroid passing within ~
 45 million km of Earth's orbit
- □ "Potentially Hazardous Objects" Subset of NEOs larger than ~ 140 meters that can pass within 7.5 million km of Earth's orbit (about 20% of NEO population)
- NEOs are of great importance to humankind
 - Planetary Science: NEOs offer clues to the chemical mix and environment during the early solar system formation process.
 - Life Sciences: NEOs likely provided much of the water and organics to the early Earth – thus allowing life to form.
 - Subsequent NEO impacts punctuated evolutionary process allowing only the most adaptable species to continue (i.e. including mammals).
 - Space Resources: Could provide future raw materials for human exploration (i.e., H₂0, O₂, rocket fuel, metals).
 - Planetary Defense: We need to find them before they find us!
 - S/C landings & returns: NEOs are among the most accessible objects.
 - Space-based IR and the next generation of ground-based optical surveys need to be carried out to supply suitable mission targets and meet the 12/30/2005
 Congressional directive to find 90% of the NEO population larger than 140 meters.

disaster.

Jet Propulsion Laboratory California Institute of Technology Communicating NEO Risk is Difficult Pasadena California

☐ Impact probability computations are complex and arcane.
Serious impact events are low probability/high consequence.
□ Vast majority of actual impact events will be small NEAs:
Bolides and fireballs take us by surprise.
Small NEAs are often found after they pass Earth closely.
Without much larger, wide-field telescope apertures,
warnings times will be short or non-existent.
□ Long-term non-zero impact predictions (IP ≠ 0) can be
followed by a rapid drop to $IP = 0$ when sufficient data are
available.
☐ Sometimes leads to charges that NASA made a mistake

or there is a conspiracy to withhold news of upcoming

Rapidly Reducing NEO Position Uncertainties – Apophis Example

Potential Impact Detection

