Keck Institute for Space Studies mini-program Shedding Light on the Nature of Dark Matter

Leonidas Moustakas JPL/Caltech

Electronic++ Communication...

- Wiki for expositions and figure sharing
 - Need an account if you don't have one yet (see AB)
 - Open to at-large community to contribute (email AB)
- Talk PDFs will be posted
 - Please provide PDFs of talks and discussion intros
- Daily highlights on our blog for record + comments
 - LAM by default but open to all participants!
- Twitter updates @kissdarkmatter pass it on!
 - Dima Tseliakhovich & Sam Lee
- CVS Repository for workshop report write-up
- Perspective snapshot filming, Shane Rymer, Director
 - http://ultrafinemedia.com

			Keck Institute Dark matter workshop - July 2009									
		Week 1					Week 2					
Name	Organization	13	14	15	16	17	20	21	22	23	24	
Leonidas Moustakas	JPL/Caltech											
Andrew Benson	Caltech											
Kevork Abazajian	Univ Maryland											
Marusa Bradac	UC Davis											
James Bullock	UC Irvine											
Dan Coe	JPL/Caltech											
Art Congdon	JPL											
Jonathan Feng	UC Irvine											
Marla Geha	Yale											
Rudy Gilmore	UC Santa Cruz											
Sunil Golwala	Caltech											
Tesla Jeltema	UCO/Lick Observatories											
Marc Kamionkowski	Caltech											
Manoj Kaplinghat	UC Irvine											
Charles Keeton	Rutgers Univ											
Savvas Koushiappas	Brown Univ											
Mike Kuhlen	IAS, Princeton											
Ricardo Munoz	Yale											
Priya Natarajan	Yale											
Annika Peter	Caltech											
Joel Primack	UC Santa Cruz											
Stefano Profumo	UC Santa Cruz					13						
Jason Rhodes	JPL/Caltech											
Kris Sigurdson	U Brit Columbia											
Josh Simon	Carnegie											
Daniel Stern	JPL/Caltech											
Louie Strigari	Stanford											
James Taylor	Univ Waterloo											
Risa Wechsler	KIPAC/Stanford											
Ross Fadely	Rutgers Univ											
Richard Massey	ROE											

setting the stage...

The canonical baseline model

- Joel's talk in a few moments will give us the background and context for the "canonical" framework we can start from. In a nutshell, we take this to include:
 - A power spectrum P(k) set in place from inflation;
 - A structure growth function governed by a gravitational and collisionless dark matter; and
 - A dark matter particle with properties that reproduce the observed cosmic abundance.

A little more detail on dark matter...

- What dark matter must be...
 - It must be non-relativistic enough to have allowed structure to form as observed.
 - It must be long lived to be have survived to the present.
 - It is not baryonic, since Omega_matter is >> than Omega_baryons.
- What dark matter may be...
 - Dark matter could be thermal or non-thermal.
 - While the chemical de-coupling is fixed by the cosmic abundance, the kinematic and acoustic de-coupling is fair game.
 - There is a lot of room between what direct detection experiments might measure, and what astrophysical measurements might constrain...
 - Also, there could be many kinds of dark matter, that may even be beyond the capability of direct or indirect experiments!

"Extensions" to the canonical view

- DM-DM elastic scattering cross sections
- DM-baryon scattering cross-sections
 - elastic
 - inelastic
 - spin-dependent
- Late-decaying dark matter (NLSP->LSP with a Δ m/m)
- Broken scale invariance in the power spectrum
- The phase space density
- Cold + hot (massless) dark matter component
- Dark U(1)
- Warm dark matter (m_{DM}, mixing angle)

Connecting observations...

- Each of these descriptive "extensions" captures one or several aspects that are fundamental to the nature of the dark matter particle (or particles).
- For a concrete example, consider the case where the power spectrum has a cutoff scale k_{cutoff} .
 - Several of the 'extensions' can produce cutoffs, with a variety of physical mechanisms

The matter power spectrum

100pc 1kpc 10kpc 100kpc 1Mpc

??

What goes on at small scales is tied to fundamental properties of dark matter!

It is also a regime probed uniquely by strong gravitational lensing, at many distinct cosmic epochs.

Lensing with a wineglass

The basic lensing diagram...

A galaxy-AGN strong lens & dark matter

- 1. Einstein radius: total mass (dm+stars) enclosed.
- 2. Microlensing at each image: dark matter to stellar fraction.
- Magnification
 perturbations: (m)
 moment of dm mf.
- 4. Position perturbations:
 (m^{3/2})th moment of dm
 mass function.
- 5. Time delay perturbations: (m²) moment of dm mass function.

Strong lensing & small scale P(k)

- There are some measurements of the abundance of small scale dark matter structure in lens galaxies already.
- The potential behind using strong lensing as a high fidelity and very precise measurement of the actual mass function *shape* over many decades of scale, at many different cosmic epochs, is great!
- The challenge is not only in synthesizing these, but to make useful connections with dark matter properties.

connections

- There are, naturally, many different observables that are possible to make today, or in the future. A small list:
 - The cosmic abundance of dark matter
 - Lyman alpha forest / P(k)
 - Strong lensing dark matter substructure / P(k)
 - 21cm / P(k)
 - Phase space density Q
 - Dwarf galaxy abundances
 - Dark matter cusps
 - Diffuse x-ray emission
 - Gamma ray annihilation
 - Tidal tails
 - Galaxy cluster weak lensing
 - Direct detection experiments with different parameters
- We wish to develop a quantitative framework for connecting the "extensions" to the ensemble of observables.

connections – side by side

Theoretical extensions, each with a " M_i " factor

- DM-DM elastic scattering cross sections
- DM-baryon scattering cross-sections
 - elastic
 - inelastic
 - spin-dependent
- Late-decaying dark matter (NLSP->LSP with a Δm/m)
- Broken scale invariance in the power spectrum
- The phase space density
- Cold + hot (massless) dark matter component
- Dark U(1)
- Warm dark matter (m_{DM}, mixing angle)

Observational parameters, each w/ "O_j"

- The cosmic abundance of dark matter
- Lyman alpha forest / P(k)
- Strong lensing dark matter substructure / P(k)
- 21cm / P(k)
- Phase space density Q
- Dwarf galaxy abundances
- Dark matter cusps
- Diffuse x-ray emission
- Gamma ray annihilation
- Tidal tails
- Galaxy cluster weak lensing
- Direct detection experiments with different parameters

Model
parameters
that describe
broad and
generic dark
matter
particle
features

 M_i

Cross correlation matrix A_{ij}

Observed factors

 O_i

Observed factors

 O_j

Cross correlation matrix B_{ji}

Model
parameters
that describe
broad and
generic dark
matter
particle
features

 M_i

Levels or Stages of the analysis

- there are different "levels" or "stages" to do this:
- A: try to set up the extensions array in a super general way, so that generic particle properties are captured, that post facto can be compared against different candidates
- B: set up the M=AO or O=BM equations for each flavor of particle candidate, since the physics of each candidate may dictate how different extension properties inter-relate
- I. 'yes' or 'no' in correlation matrix for each Mi
- II. Relative importance values in correlation matrix for each Mi
- III. Full Fisher matrix for each Mi against all observables or vice versa.....

what is the right way to do this?

- Why do we want to do this?
 - to fold in as much information as possible
 - to be able to quantitatively evaluate different dm candidates and possibly figure out how to rule some out now or in the future
 - to help direct what experiments, observations, or missions need to be pursued, and to be able to build community-wide support
- Most of all: we wish to develop a straightforward enough framework that is extendable and flexible, that can be an important tool in the future as well as today
- Dan Coe will lead a discussion on precisely this in the afternoon

Goals summary

- Mathematical framework for connecting diverse observations with extensions
 - Develop the (linear?) parameters that describe each of these on both sides – for many / most of them if possible
 - Work out the best way to draw these connections
- Discuss whether it is possible to currently set best future goals / experiments, based on what we know today
- What is the best way to *rule candidates out*?
- Have fun & germinate new ideas!

How is this going to work?

- Mornings: In Cahill
 - A talk (20-50 minutes), whether ppt or whiteboard
 - Moderated discussion on prepared topic(s)
- Afternoons: At home-base, Downs/Lauritsen
 - Moderated discussion on prepared topic(s)
- Some social events see calendar!
- For discussion "note taking", use the wikipage!!
- We are already working on the workshop report, which everyone will pitch in with.