Dark Matter Dominated Objects

Louie Strigari Stanford

Milky Way Circa 2009

<u>Satellite</u>	Year Discovered
LMC	1519
SMC	1519
Sculptor	1937
Fornax	1938
Leo II	1950
Leo I	1950
Ursa Minor	1954
Draco	1954
Carina	1977
Sextans	1990
Sagittarius	1994
Ursa Major I	2005
Willman 1	2005
Ursa Major II	2006
Bootes I	2006
Canes Venatici I	2006
Canes Venatici II	2006
Coma Berenices	2006
Segue 1	2006
Leo IV	2006
Hercules	2006
Bootes II	2007
Leo V	2008
Segue 2 2009	

What is the minimum mass dark matter halo? What is the minimum mass ``galaxy?"

Mapping satellites onto CDM subhalos

Kinematics [e.g. Strigari et al. 2007, 2008, Li et al. 2008, Maccio et al. 2008]

Satellite Masses

■ Derived from spherical-symmetric analysis with variable velocity anisotropy

Up to 8 parameters are free, though all not necessary for the faintest systems

- Estimated total mass-to-light ratios: 10-1000+
- Segue 1: Least luminous known galaxy (Geha et al. 2009)
- Tidal effects important, but not within stellar radius (Penarrubbia et al. 2008)

Tidal Disruption and Rotation

LCDM and the M₃₀₀/M₆₀₀ relation

Extrapolation of abundance matching technique [e.g. Kravtsov et al. 2004] implies the least luminous galaxies live in halos of about 10⁸ Msun

The core/cusp ``problem"

- CDM predicts NFW/Einasto cuspy profiles
- WDM or some alternatives predict shallower central densities
- Current data from MW dwarf spheroidals are unable to conclusively establish whether these galaxies have cores or cusps

Error projections

