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for all six halos with about 200 million particles within R200. Fur-

ther details of the halos and their characteristics can be found in

Springel et al. (2008).

In the following analysis we will often compare the six level-2

resolution halos, Aq-A-2 to Aq-F-2. To facilitate this comparison,

we scale the halos in mass and radius by the constant required to

give each a maximum circular velocity of Vmax = 208.49 km/s,
the value for Aq-A-2. We will also sometimes refer to a coordi-

nate system that is aligned with the principal axes of the inner halo,

and which labels particles by an ellipsoidal radius rell defined as

the semi-major axis length of the ellipsoidal equidensity surface on

which the particle sits. We determine the orientation and shape of

these ellipsoids as follows. For each halo we begin by diagonal-

ising the moment of inertia tensor of the dark matter within the

spherical shell 6 kpc < r < 12 kpc (after scaling to a com-
mon Vmax). This gives us a first estimate of the orientation and

shape of the best fitting ellipsoid. We then reselect particles with

6 kpc < rell < 12 kpc, recalculate the moment of inertia tensor
and repeat until convergence. The resulting ellipsoids have minor-

to-major axis ratios which vary from 0.39 for Aq-B-2 to 0.59 for
Aq-D-2. The radius restriction reflects our desire to probe the dark

matter distribution near the Sun.

3 SPATIAL DISTRIBUTIONS

The density of DM particles at the Earth determines the flux of

DM particles passing through laboratory detectors. It is important,

therefore, to determine not only the mean value of the DM density

8 kpc from the Galactic Centre, but also the fluctuations around this

mean which may result from small-scale structure.

We estimate the local DM distribution at each point in our

simulations using an SPH smoothing kernel adapted to the 64

nearest neighbours. We then fit a power law to the resulting dis-

tribution of ln ρ against ln rell over the ellipsoidal radius range

6 kpc < rell < 12 kpc. This defines a smooth model density
field ρmodel(rell). We then construct a density probability distribu-
tion function (DPDF) as the histogram of ρ/ρmodel for all particles

in 6 kpc < rell < 12 kpc, where each is weighted by ρ−1 so that

the resulting distribution refers to random points within our ellip-

soidal shell rather than to random mass elements. We normalise the

resulting DPDFs to have unit integral. They then provide a prob-

ability distribution for the local dark matter density at a random

point in units of that predicted by the best fitting smooth ellipsoidal

model.

In Fig. 1 we show the DPDFs measured in this way for all

resimulations of Aq-A (top panel) and for all level-2 halos after

scaling to a common Vmax (bottom panel). Two distinct compo-

nents are evident in both plots. One is smoothly and log-normally

distributed around ρ = ρmodel, the other is a power-law tail to high

densities which contains less than 10−4 of all points. The power-

law tail is not present in the lower resolution halos (Aq-A-3, Aq-

A-4, Aq-A-5) because they are unable to resolve subhalos in these

inner regions. However, Aq-A-2 and Aq-A-1 give quite similar re-

sults, suggesting that resolution level 2 is sufficient to get a reason-

able estimate of the overall level of the tail. A comparison of the six

level 2 simulations then demonstrates that this tail has similar shape

in different halos, but a normalisation which can vary by a factor

of several. In none of our halos does the fraction of the distribu-

tion in this tail rise above 5× 10−5. Furthermore, the arguments of

Springel et al (2008) suggest that the total mass fraction in the in-

ner halo (and thus also the total volume fraction) in subhalos below
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Figure 2. Top four panels: Velocity distributions in a 2 kpc box at the Solar
Circle for halo Aq-A-1. v1, v2 and v3 are the velocity components parallel

to the major, intermediate and minor axes of the velocity ellipsoid; v is the
modulus of the velocity vector. Red lines show the histograms measured

directly from the simulation, while black dashed lines show a multivari-

ate Gaussian model fit to the individual component distributions. Residuals

from this model are shown in the upper part of each panel. The major axis

velocity distribution is clearly platykurtic, whereas the other two distribu-

tions are leptokurtic. All three are very smooth, showing no evidence for

spikes due to individual streams. In contrast, the distribution of the velocity

modulus, shown in the upper left panel, shows broad bumps and dips with

amplitudes of up to ten percent of the distribution maximum. Lower panel:

Velocity modulus distributions for all 2 kpc boxes centred between 7 and
9 kpc from the centre of Aq-A-1. At each velocity a thick red line gives the
median of all the measured distributions, while a dashed black line gives

the median of all the fitted multivariate Gaussians. The dark and light blue

contours enclose 68% and 95% of all the measured distributions at each ve-

locity. The bumps seen in the distribution for a single box are clearly present

with similar amplitude in all boxes, and so also in the median curve. The

bin size is 5 km/s in all plots.

Vogelsberger et al., MNRAS 2009
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Fig. 11.— The Galactic sky coverage of the observed BHB stars (red dots) and selected
simulated stars (black dots), drawn from Simulation I.
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Fig. 17.— As in Figure 16, but here the circular velocity curves were derived under the
assumption of a contracted NFW profile. The solid line is the best-fit circular velocity curve
to the Vcir(r) estimates, while the large symbols in the two plots are the Vcir(r) estimates.

Contributions of the adopted model components (i.e. disk, bulge, and halo) and the circular
velocity curves based on the Jeans Equation are plotted in different linestyles. Estimates of

virial mass, Mvir, virial radius, rvir and concentration parameter, c are labeled on the plots.

Milky Way Rotation Curve

Mass estimates broadly 
consistent with those that 
use satellite dynamics (Frenk & 
White 1981, Little & Tremaine 1987, 
Kochanek 1996, Evans & Wilkinson 1999, Li 
& White 2008)

Xue et al. 2008 uses population 
of 2000 BHB stars out to 60 kpc
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this sample enables construction of the full line-of-sight velocity distribution at

different Galactocentric radii. To interpret these distributions, we compare them
to matched mock observations drawn from two different cosmological galaxy for-
mation simulations designed to resemble the Milky Way, which we presume to

have an appropriate orbital distribution of halo stars. Specifically, we select sim-
ulated halo stars in the same volume as the observations, and derive the distribu-

tions P(Vlos/Vcir) of their line-of-sight velocities for different radii, normalized by
the simulation’s local circular velocity. We then determine which value of Vcir(r)

brings the observed distribution into agreement with the corresponding distribu-
tions from the simulations. These values are then adopted as observational esti-
mates for Vcir(r), after a small Jeans Equation correction is made to account for

slight data/simulation differences in the radial density distribution. This proce-
dure results in an estimate of the Milky Way’s circular velocity curve to ∼ 60 kpc,

which is found to be slightly falling from the adopted value of 220 km s−1 at the
Sun’s location, and implies M(< 60 kpc) = 4.0 ± 0.7 × 1011M". The radial
dependence of Vcir(r), derived in statistically independent bins, is found to be

consistent with the expectations from an NFW dark matter halo with the estab-
lished stellar mass components at its center. If we assume an NFW halo profile

of characteristic concentration holds, we can use the observations to estimate the
virial mass of the Milky Way’s dark matter halo, Mvir = 1.0+0.3

−0.2 × 1012M", which

is lower than many previous estimates. We have checked that the particulars of
the cosmological simulations are unlikely to introduce systematics larger than the
statistical uncertainties. This estimate implies that nearly 40% of the baryons

within the virial radius of the Milky Way’s dark matter halo reside in the stellar
components of our Galaxy. A value for Mvir of only ∼ 1×1012M" also (re-)opens

the question of whether all of the Milky Way’s satellite galaxies are on bound
orbits.

Subject headings: Cosmology: dark matter — galaxies: individual(Milky Way)
— Galaxy: halo — stars: horizontal-branch — stars: kinematics

1. Introduction

The visible parts of galaxies are, in the current paradigm for galaxy formation, concen-

trations of baryons at the center of much larger dark matter halos, which have assembled
through hierarchical merging and gas cooling. Understanding the properties of these dark
matter host halos, their virial masses, concentrations, and radial mass profiles, vis-a-vis the
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Figure 7. The lower panel shows the 2-dimension likelihood contours that can be placed on the local escape velocity (vesc) and the shape of the velocity

distribution (k; see Section 2) from our combined high-velocity sample. The cross corresponds to the peak likelihood, while the contours denote 10 and 1

per cent of this peak likelihood value. The upper panel shows the likelihood distribution for vesc obtained by assuming a uniform prior on k ∈ [2.7, 4.7] (see
Section 3.1); the corresponding error bar shows the 90 per cent confidence interval. The dotted quantities show the results from a sample containing only the

high-velocity RAVE stars, i.e. a smaller sample of 16 stars.

the only difference is a general broadening of the contours. When

we apply the prior k ∈ [2.7, 4.7] we find that the 90 per cent con-
fidence interval becomes 496 < vesc < 655 km s

−1, with a median

likelihood of vesc = 556 km s
−1.

5.2 Bootstrap analysis

To further assess the likelihood constraints presented in the previ-

ous section, we also apply the bootstrap technique (see Section 2.2)

to our data.

We apply the bootstrap approach to the combined dataset of

33 stars, but unlike Section 5.1 we apply the LT90 approximation

(equation 6) when calculating the maximum likelihood. The boot-

strap computed the values of vesc and k that maximized equation

(9) using 5000 resamples of the original RAVE sample. Table 4

shows the resulting values of vesc and k for the two chosen priors

(see Appendix A).

When we compare the bootstrap interval with the likelihood

interval obtained in Section 5.1, we find that the interval is shifted

towards smaller vesc. This is consistent with what one would expect

for the bootstrap method, since (unlike the method described in

Section 5.1) the process of bootstrapping can result in values of vesc
that are smaller than the highest velocity star in the sample. This

is a consequence of the fact that the bootstrap approach accounts

for possible unreliable or inconsistent data. However, it is also im-

portant to note that the bootstrap mean values of k and vesc found

with both priors are identical, within standard errors, to those found

in the previous section using the non-bootstrap technique with the

LT90 prior. Figure 8 shows the bootstrap distributions and corre-

sponding confidence intervals calculated for k and vesc when each

prior is applied to equation (9). The dashed curves correspond to

Prior 1, while the solid curves correspond to Prior 2. The confi-

dence intervals obtained using Prior 2 are clearly smaller than that

from Prior 1, owing to the fact that Prior 2 contains more informa-

tion about our expectations of k.

As a result of our analyses with a simulated dataset (see Ap-

pendix A), we adopted the confidence regions from Prior 2, obtain-

ing the bootstrap 90 per cent confidence intervals 462 km s−1 <

vesc < 640 km s
−1 and 0.1 < k < 5.4.

2 Smith et al.

lar circle, the escape velocity contains information about the mass

exterior to the solar circle. Although one needs a model for this

mass distribution, the escape velocity (i.e. the local gravitational

potential) can be used as a constraint from which it is possible to

determine the total mass.

It is possible to use more distant measurements to investigate

the extent of the Galactic halo. Unfortunately, gas rotation curves

cannot be traced beyond the extent of gas in circular orbits, ∼ 20
kpc for the Milky Way. The task of tracing the rotation curve is also

complicated by the fact that velocities have to be accompanied by

distances (Binney & Dehnen 1997) and, in any case, our Galaxy

does not appear to have an extended HI disk. As a consequence,

most methods of probing the halo rely on satellites and globu-

lar clusters, whose velocities can be measured out to significantly

greater Galactocentric distances. Many authors have used the ve-

locities of the Milky Way’s satellite galaxies and globular clusters

in an attempt to constrain the total halo mass. Although numerous

papers have dealt with this subject (Little & Tremaine 1987; Zarit-

sky et al. 1989; Kulessa & Lynden-Bell 1992; Kochanek 1996), two

of the more recent ones to exploit the motions of satellite galaxies

and globular clusters have concluded the total mass of the halo to

be around 2 × 1012 M# : Wilkinson & Evans (1999) found a halo
mass of ∼ 1.9+3.6−1.7 × 10

12 M# by adopting a halo model which pro-

duces a flat rotation curve that is truncated beyond an outer edge;

whereas Sakamoto, Chiba & Beers (2003), using a halo potential

that gives a flat rotation curve, also included the velocities of field

horizontal-branch stars to find a total halo mass of 2.5+0.5−1.0×10
12 M#

or 1.8+0.4−0.7 × 10
12 M#, depending on whether or not the analysis in-

cludes Leo I. Another complementary approach that can be adopted

is to analyse the radial velocity dispersion profile of halo objects;

Battaglia et al. (2005; 2006) used this method to determine a total

mass of 0.5− 1.5× 1012 M# depending on the chosen model for the
halo profile (see also Dehnen, McLaughlin & Sachania (2006) for a

reanalysis of this dataset). The future for this field looks promising

with space missions such as Gaia (due for launch 2011; Perryman

et al. 2001; Wilkinson et al. 2006) and Space Interferometery Mis-

sion (due for launch ∼ 2015; Allen, Shao & Peterson 1998), since
such missions will be able to provide accurate proper motion infor-

mation to complement the existing radial velocity measurements;

with such high quality data it should be possible to determine the

mass of the MilkyWay to ∼ 20 per cent (Wilkinson & Evans 1999).
One can see that the current results mentioned above still pro-

duce a factor of ∼ 2 uncertainty in the mass of the Milky Way, due
to the fact that the results are still model dependent and are hin-

dered by small number statistics concerning the relevant datasets.

Therefore it would be very valuable if one could provide tight con-

straints on the local escape velocity in order to pin down the grav-

itational potential at this point. As far back as the 1920s samples

of high velocity stars were being used to estimate the local escape

velocity (for example, Oort 1926; Oort 1928). As the 20th century

progressed, many papers refined the estimate of vesc (see Fich &

Tremaine [1991] for a review), culminating in the final decade with

the seminal work of Leonard & Tremaine (1990, hereafter LT90)

and the subsequent refinement by Kochanek (1996, hereafter K96).

These two papers concluded that, to 90 per cent confidence, the es-

cape velocity lies in the range 450 km s−1 < vesc < 650 km s
−1 and

489 km s−1 < vesc < 730 km s
−1, respectively. Their conclusions are

hampered by several problems: firstly, the paucity of high velocity

stars from which to estimate vesc; secondly the fact that biases were

introduced by selecting high velocity stars from proper-motion sur-

veys; and thirdly the uncertainty in the assumptions regarding the

underlying form of the tail of the velocity distribution. In this new

century the difficulties posed by the first two issues are to some

extent diminishing due to the large kinematically unbiased surveys

that are now underway or planned, such as RAdial Velocity Exper-

iment (RAVE; Steinmetz et al. 2006; see also Section 4.1), Sloan

Extension for Galactic Understanding and Exploration (SEGUE;

Beers et al. 2004) and Gaia (Perryman et al. 2001). The latter prob-

lem can be tackled through various methods; one such approach

could be to use predictions from cosmological simulations to esti-

mate the form of the velocity distributions. In this paper we shall

make use of the advancement afforded to us by the RAVE survey,

combined with the analysis of cosmological simulations, to refine

the determination of vesc.

The outline of this paper is as follows. In Section 2 we review

the analytical techniques that have been developed to constrain the

escape velocity from a sample of velocity measurements. Then in

the following section we assess various aspects of these techniques

using cosmological simulations. In particular we use the simula-

tions to estimate the expected shape of the tail of the velocity distri-

bution, which is a crucial ingredient in the escape velocity analysis.

In Section 4 we present the data that we will use to constrain the

escape velocity and undertake some tests to ensure that these data

are reliable. Our new data come from the RAVE project (Steinmetz

et al. 2006), but are augmented with archival data from published

surveys. In Section 5 we present our results and in Section 6 we

consider some of the issues arising from or concerning these re-

sults; in particular, this latter section discusses the nature of our

high velocity stars (Section 6.1), the effect of the sample volume

on the recovery of the escape velocity (6.2), the possible contami-

nation from unbound stars (6.3) and also uses our new constraints

on vesc to investigate the total mass of the Galactic halo (6.4). In

Section 7 we conclude our paper with a brief summary.

2 ANALYSIS TECHNIQUES

2.1 Likelihood

The techniques that we apply in order to constrain the escape veloc-

ity (vesc) are based on those established by LT90. They parametrize

the distribution of stellar velocities around vesc according to the fol-

lowing formula,

f (|v| | vesc, k) ∝ (vesc − |v|)k, |v| < vesc (1)

f (|v| | vesc, k) = 0, |v| ! vesc, (2)

where |v| is the speed of the star and k describes the shape of the
velocity distribution near vesc. Note that this approach is only valid

if the stellar velocities do indeed extend all the way to vesc. If there

is any truncation in the velocities then this approach will underes-

timate the true vesc.

Under the assumption that the Jeans theorem can be applied

to the the system, Equation (1) can be understood by considering

the distribution function for the energies of the stars, ε. Assuming

there is no anisotropy in the velocities, we can write the asymptotic

form of the distribution function as a power-law (K96),

f (ε) ∝ εk , where ε = −(Φ + |v|2/2), (3)

where Φ corresponds to the potential energy and |v|2/2 to the ki-
netic energy. Again k describes the shape of the velocity distribu-

tion near vesc. Clearly Φ = −v2esc/2, which results in the following
simple form for the asymptotic behaviour of the velocity distribu-

tion,

f (|v| | vesc, k) ∝ (v2esc − |v|
2)k = [(vesc − |v|)(vesc + |v|)]k. (4)
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Figure 4. Results from the follow-up work described in Section 4.3 for 12

of our high radial velocity RAVE stars. The horizontal axis shows the dif-

ference between the velocity as reported in the RAVE catalogue compared

to the weighted mean of all velocities taken during the follow-up campaign.

Note the good agreement between the two measurements. Typical errors

are ∼ 2 km s−1 for the RAVE catalogue and < 1 km s−1 for the follow-up
velocities.

servations (including the two binary stars). The total number of ob-

servations for each star varies from between one and four (see Table

3).

4.4 The final high-velocity RAVE sample

Given this high quality RAVE data, we are now able to construct a

final catalogue of high radial velocity stars. Since many of our stars

now have repeat observations, we choose to adopt the weighted

mean of all measurements as our definitive velocity, with the ex-

ception of the two binary stars for which we give our estimate

of the center of binary mass motion. These are tabulated in Ta-

ble 3 and the velocity distribution is shown in the inset of Fig.

6. In Fig. 5 we show how the radial velocities vary as a function

of Galactic longitude. This plot clearly shows the signature of the

Galactic disc and from this one can obtain an understanding of

why a value of vmin ≈ 250 km s−1 results in significant contami-
nation from the disc; if the mean rotational velocity of our sample

is close to zero (as we would like for a halo population), then there

should be an equal number of stars with positive and negative ra-

dial velocity for a given longitude. However, for l ≈ 270 there is
clearly a greater number of stars with radial velocities in the range

vr ∈ (−300,−250) compared to vr ∈ (250, 300), indicating contam-
ination by a rotating component. Note that this asymmetry is not

evident for stars with |vr| > 300 km s−1, which supports our choice
of vmin = 300 km s

−1.

Figure 5. The relation between radial velocity (corrected for Solar mo-

tion) and longitude for stars in the RAVE catalogue. Note that the sig-

nature of the disc is clearly visible. The horizontal lines correspond to

vr = −300,−250, 0,+250,+300 km s−1. The crosses simply denote stars
with |vr | > 250 km s−1.

4.5 Augmenting our high velocity sample with stars from

archival surveys

Since we would like our sample of stars to be as large as possible,

we incorporate additional stars from the Beers et al. (2000) cata-

logue of metal poor stars. It is important to note that this sample

is kinematically unbiased, which is important if we are to com-

bine datasets in this way. This sample is ideal since it contains

metal poor stars, which are preferentially halo stars. The Beers et

al. (2000) sample provides a total of 17 stars faster than 300km s−1,

once we have removed three stars for which the distance estimate

indicates that they are further than 5 kpc away (all of the retained

stars have distances of less than 2.5 kpc). These archival stars are

given in Table B1.

This brings the total number of stars in our full augmented

sample to 33, which is a significant improvement on the number

of stars used in LT90 (15 stars with vr > 250 km s
−1) and K96 (10

stars with vr > 300 km s
−1).

The velocity distribution for this larger augmented sample is

shown in Fig. 6. Note that the inset of this figure compares the dis-

tribution of RAVE stars with the distribution of our archival stars

from Beers et al. (2000). The Kolmogorov-Smirnov test indicates

no significant discrepancy between these two distributions (14 per

cent probability that they come from different distributions), so

there is no inconsistency in combining the two data sets. In ad-

dition, similar to the RAVE sample (as was shown in Fig. 5), we

reassuringly find no correlation between radial velocity and Galac-

tic longitude. In Section 5 we check that the process of combining

datasets does not introduce any obvious bias by carrying out the

likelihood analysis on both the combined sample as well as a sam-

ple consisting solely of our 16 RAVE stars.

Smith et al., 
Mon.Not.Roy.Astron.Soc.379:755-772,2007

Escape Velocity 
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Fig. 14.— The log-likelihood surface of the orbit fit for the family
of flattened logarithmic potentials (Eq. 5) with different circular
velocities Vc and flattenings qΦ with a flat prior on Vc. Note that
Vc enters both into the model velocities of the stream stars and into
the correction of all three velocity components for the Sun’s motion.
The contours show the 1σ, 2σ and 3σ confidence regions. The inset
panels at the bottom and on the left show the 1D marginalized
posterior probability distributions for Vc, qΦ respectively. The gray
line in the bottom panel shows the probability distribution for the
Vc from Ghez et al. (2008), which we shall use as a prior in Fig. 15.

Fig. 15.— The log-likelihood surface of the orbit fit for the fam-
ily of flattened logarithmic potentials (Eq. 5) with different circular
velocities Vc and flattenings qΦ, but now with a prior on the Vc
of 229±18 km/s from Ghez et al. (2008). The likelihood was also
marginalized over the Gaussian prior on R0 = 8.4 ± 0.4 kpc. As
on Fig. 14 the contours show the 1σ, 2σ and 3σ confidence re-
gions. The inset panels at the bottom and on the left show the 1D
marginalized posterior probability distributions for Vc, qΦ respec-
tively. The gray line in the bottom panel shows the adopted prior
distribution for the Vc from Ghez et al. (2008)

5.2. Constraints on the shape of the dark matter halo
from a bulge, disk, halo 3-component potential

In the previous section we constrained the parame-
ters of a simplified MW potential, the spheroidal log-
arithmic potential. It is clear that the MW potential
at the position of the stream must depend explicitly

Fig. 16.— The data-model comparison for a set of best-fit or-
bits in different logarithmic potentials (Eq. 5) with three differ-
ent (Vc, qΦ) parameters values (180 km/s,1.1), (220 km/s,0.9),
(260 km/s,0.8.) The colored data points with error bars show the
observational data, while the black lines show the model predic-
tions (different line styles show the orbit models in different poten-
tials). The top left panel shows the positions on the sky, the top
right panel shows the proper motions, the bottom left panel shows
the distances, the bottom right panel shows the radial velocities.
On the top right panel, red circles and thin lines show µφ1

, while
blue squares and thick lines show µφ2

.

on the sum of baryonic Galaxy components (bulge and
disk) and on the dark matter halo. We now explore
whether our constraint on the shape of the overall po-
tential, qΦ ∼ 0.9, permits interesting statements about
the shape of the DM potential itself. At the distance
of (R, z) ≈ (12, 6) kpc the contribution of the disk to
the potential should still be relatively large, weakening
or at least complicating inferences on the shape of the
DM distribution.

We adopt a three-component model of the Galaxy po-
tential, choosing one that is widely used in the mod-
eling of the Sgr stream (Helmi 2004; Law et al. 2005;
Fellhauer et al. 2006) and reproduces the galactic rota-
tion curve reasonably well.

The model consists of a halo, represented by the loga-
rithmic potential

Φhalo(x, y, z) =
v2

halo

2
ln

(

x2 + y2 +

(

z

qΦ,halo

)2

+ d2

)

,

(6)
where we have adopted d = 12 kpc from the previous
authors. The disk is represented by a Miyamoto-Nagai
potential (Miyamoto & Nagai 1975),

Φdisk(x, y, z) =
GMdisk

√

x2 + y2 + (b +
√

z2 + c2)2
(7)

with b = 6.5 kpc, c = 0.26 kpc. The bulge is modeled as
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Fig. 14.— The log-likelihood surface of the orbit fit for the family
of flattened logarithmic potentials (Eq. 5) with different circular
velocities Vc and flattenings qΦ with a flat prior on Vc. Note that
Vc enters both into the model velocities of the stream stars and into
the correction of all three velocity components for the Sun’s motion.
The contours show the 1σ, 2σ and 3σ confidence regions. The inset
panels at the bottom and on the left show the 1D marginalized
posterior probability distributions for Vc, qΦ respectively. The gray
line in the bottom panel shows the probability distribution for the
Vc from Ghez et al. (2008), which we shall use as a prior in Fig. 15.

Fig. 15.— The log-likelihood surface of the orbit fit for the fam-
ily of flattened logarithmic potentials (Eq. 5) with different circular
velocities Vc and flattenings qΦ, but now with a prior on the Vc
of 229±18 km/s from Ghez et al. (2008). The likelihood was also
marginalized over the Gaussian prior on R0 = 8.4 ± 0.4 kpc. As
on Fig. 14 the contours show the 1σ, 2σ and 3σ confidence re-
gions. The inset panels at the bottom and on the left show the 1D
marginalized posterior probability distributions for Vc, qΦ respec-
tively. The gray line in the bottom panel shows the adopted prior
distribution for the Vc from Ghez et al. (2008)

5.2. Constraints on the shape of the dark matter halo
from a bulge, disk, halo 3-component potential

In the previous section we constrained the parame-
ters of a simplified MW potential, the spheroidal log-
arithmic potential. It is clear that the MW potential
at the position of the stream must depend explicitly

Fig. 16.— The data-model comparison for a set of best-fit or-
bits in different logarithmic potentials (Eq. 5) with three differ-
ent (Vc, qΦ) parameters values (180 km/s,1.1), (220 km/s,0.9),
(260 km/s,0.8.) The colored data points with error bars show the
observational data, while the black lines show the model predic-
tions (different line styles show the orbit models in different poten-
tials). The top left panel shows the positions on the sky, the top
right panel shows the proper motions, the bottom left panel shows
the distances, the bottom right panel shows the radial velocities.
On the top right panel, red circles and thin lines show µφ1

, while
blue squares and thick lines show µφ2

.

on the sum of baryonic Galaxy components (bulge and
disk) and on the dark matter halo. We now explore
whether our constraint on the shape of the overall po-
tential, qΦ ∼ 0.9, permits interesting statements about
the shape of the DM potential itself. At the distance
of (R, z) ≈ (12, 6) kpc the contribution of the disk to
the potential should still be relatively large, weakening
or at least complicating inferences on the shape of the
DM distribution.

We adopt a three-component model of the Galaxy po-
tential, choosing one that is widely used in the mod-
eling of the Sgr stream (Helmi 2004; Law et al. 2005;
Fellhauer et al. 2006) and reproduces the galactic rota-
tion curve reasonably well.

The model consists of a halo, represented by the loga-
rithmic potential

Φhalo(x, y, z) =
v2

halo

2
ln

(

x2 + y2 +

(

z

qΦ,halo

)2

+ d2

)

,

(6)
where we have adopted d = 12 kpc from the previous
authors. The disk is represented by a Miyamoto-Nagai
potential (Miyamoto & Nagai 1975),

Φdisk(x, y, z) =
GMdisk

√

x2 + y2 + (b +
√

z2 + c2)2
(7)

with b = 6.5 kpc, c = 0.26 kpc. The bulge is modeled as
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Figure 9: Top panel: Galactic rotation curve in the case of an Einasto profile. Different curves are
associated to the contributions of the various Galactic components. Bottom panel: as for the top
panel but assuming a NFW profile. Concerning the rotation curves, the two cases are essentially
indistinguishable.
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New Local Density Result

As determined from following 
data sets:
1) Terminal velocities
2) VBLI high mass SF regions
3) Cepheid PMs from Hipparcos
4) Local surface density
4) BHB stars
5) Satellite dynamics
 

For Einasto profile, local 
dark matter density is 
0.385 +/ 0.027 GeV cm-3

(Similar result for NFW)
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Figure 1: The fractional deviation of the WIMP mass limits from the input mass, (mlim! −m
in
! )/min! , for

exposures E = 3×103,3×104 and 3×105kgday and input cross-section "p = 10−8 pb for the benchmark

SuperCDMS like detector. The solid (dotted) lines are the 95% (68%) confidence limits.

events for a given experiment, Nexpt, is drawn from a Poisson distribution with mean # . We Monte

Carlo generate Nexpt events from the input energy spectrum, from which the maximum likelihood

mass and cross-section for that experiment are calculated. Finally we find the (two-sided) 68% and

95% confidence limits on the WIMP mass from the maximum likelihood masses.

3. Results and discussion

The accuracy with which theWIMPmass could be measured by thebenchmark SuperCDMS [5]

like Ge detector described above is shown in Fig. 1. With exposures of E = 3× 104 and 3×

105 kgday it would be possible to measure the mass of a light, m! ∼ O(50GeV), WIMP with an

accuracy of roughly 25% and 10% respectively. For heavy WIMPs (m! $ 100GeV) even with a

large exposure it will only be possible to place a lower limit on the mass. For very light WIMPs,

m! < O(20GeV), the number of events above the detector energy threshold would be too small to

allow the mass to be measured accurately.

The number of events detected is directly proportional to both the exposure and the cross-

section, therefore these quantities have the greatest bearing on the accuracy of the WIMP mass

determination.

The energy threshold, Eth, and the maximum energy, Emax, above which recoils are not de-

tected/analysed also affect the accuracy with which the WIMP mass can be determined. Increasing

Eth (or decreasing Emax) not only reduces the number of events detected, but also reduces the range

of recoil energies and the accuracy with which the characteristic energy of the energy spectrum,

3

Anne Green, JCAP 0807:005,2008

103-105 kg/day exposure for Ge

Figure 1: Distributions of the best–fit WIMP mass and SI WIMP–proton cross section on the
cross section vs. WIMP mass plane. The input WIMP mass and the cross section are 100 GeV
and 10−7 pb, respectively. The exposures have been assumed to be 3× 103 (left) and 3 × 104

(right) kg-day and the corresponding expected event numbers are 78 and 780, respectively. In
each frame, the contours contain 68% and 95% of the simulated experiments. See the text for
further details (Plots from [9]).

Figure 2: The 95% (solid) and 68% (dotted) confidence limits on the best–fit WIMP mass as
functions of the input WIMP mass. The input SI WIMP–proton cross section has been set here
as 10−8 pb. The assumed exposures are 3× 103, 3 × 104, and 3 × 105 kg-day, respectively (Plot
from [10]).
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Low mass WIMPs more 
strongly constrained

Variable but fixed circular velocity
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FIG. 2: Reconstruction of mχ, σSI
p under various assumptions: dark matter halo parameters fixed to assumed values (solid,

black), marginalizing over baseline halo model (filled/green), marginalizing over conservative halo model (filled/blue). In all
cases inner and outer contours represent 68% and 95% c.l. limits. The red diamond gives the true value. The left panel is for
a 50 GeV WIMP mass, the right panel assumes a 500 GeV WIMP (In the right panel, we only show 68% c.l. for the case of
fixed galactic parameters for clarity). The lower (upper) solid black contours illustrate the bias in the reconstruction assuming
incorrect values for the local dark matter density a factor of 2 above (below) the true value.

component [23] may be considered. Further one may ac-
count for the non-Maxwellian velocity distribution [24],
and a multi-component spectral fit to the WIMP and
astrophysical background spectra may be incorporated
[25, 26]. An analysis along these lines will be crucial to
interpret the limits and measurements from forthcoming
direct detection experiments.
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Figure 5. The distribution of speeds and the differential rate on the major axis (a,b) and the intermediate axis (c,d) of the logarithmic
ellipsoidal model with p = 0.9 and q = 0.8. In each panel, results are given for a radially anisotropic [γ = −1.78] solution (dotted line)
and tangentially anisotropic [γ = 16] solution (dashed line), as well as a comparison Maxwellian (full line). Panel (b) assumes that the
WIMPs are scattering off 73Ge nuclei, while panel (d) assumes that they are scattering of 23Na nuclei. The computations are carried out
for the date of June 2nd when the total rate is at a peak.

stable neutral supersymmetric particle (generally the neu-
tralino) is one of the current favourites (e.g., Jungman et
al. 1996). One promising way of confirming this hypothe-
sis involves direct detection experiments. Broadly speaking,
the experiments work by measuring the recoil energy of a
nucleus in a low background laboratory detector which has
undergone a collision with a WIMP. The aim is to measure
the number of events per day per kilogram of detector ma-
terial as a function of the recoil energy Q. Although this
deposited energy is minute and the WIMP-nucleus interac-
tion is very rare, there are a number of such experiments
in progress around the world. These include the UKDMC
collaboration operating in Boulby mine (e.g., Smith et al.
1996), the DAMA collaboration in the Gran Sasso Labora-
tory (e.g., Bernabei et al. 1999), which both use NaI scintil-
lators, and the CDMS experiment located underground at
Stanford University, which uses cryogenic germanium and

silicon detectors (e.g., Gaitskell et al. 1997).

In all these experiments, the detection rate depends on
the mass mχ and cross-section σ0 of the WIMP, as well as
the mass of the target nucleus mN in the detector. But, it
also depends on the local dark matter density ρ0 and the
speed distribution fs(v) of WIMPs in the Galactic halo near
the Earth. Calculations have already been performed us-
ing Maxwellian velocity distributions for singular and cored
isothermal spheres, as well as for self-consistent flattened
halo models (e.g., Freese et al. 1985; Jungman et al. 1996;
Kamionkowski & Kinkhabwala 1998; Belli et al. 1999). One
of our aims here is to assess the likely uncertainties in
the detection rates caused by halo triaxiality and velocity
anisotropy. The formulae for the calculation of rates in di-
rect detection experiments are summarised in the review of
Jungman et al. (1996). We give here only the bare details.


