

The exploration of multi-wavelength astronomical datasets: the case of AGNS in the Chandra Source Catalog and unsupervised clustering.

R. D'Abrusco

Motivations

Characterization of the distribution of AGNs in a high dimensionality parameter space obtained by combining multi-wavelength data and study of their X-rays properties.

The primary purpose of this study is to obtain a possible census of AGN behavior in the 13-dimensional features space of X-UV-optical-IR-Radio photometry, and pick up outliers and constrain their nature.

The approach

Unsupervised clustering in a high dimensional features space

AND

use additional information (labels) to identify interesting cluster(ing)s

IN ORDER TO

derive new high dimensional correlations and/or expand known correlations to other bands, and/or spot unusual behaviors (outliers).

Statistical issues

Few points for a large space

> 10 dimensional features space 10²~10³ sources

Very low specific density

Upper limits & Clustering

Inclusion of sources with no detections but reliable upper limits.

Outliers vs Clusters

Most clustering methods tends to prefer the selection of either well populated homogeneous clusters or to sparse clusters/singletons (outliers).

The datasets

1) "Large area surveys" sample

2) Chandra COSMOS X-ray survey

3) **SWIRE**

The datasets

1) "Large area surveys" sample

2) Chandra COSMOS X-ray survey

3) **SWIRE**

Multiple techniques

Hierarchical Clustering (K-means)

Self-Organizing Maps (SOM)

Principal Probabilistic Surfaces

KISS Study Program - 6/9/11

Multiple techniques

Hierarchical Clustering (K-means)

Self-Organizing Maps (SOM)

Atomic Spectro
Data Abundances Var* uvby

Galaxies Models UBV Asteroids

Late* CLUSTERS
QSOs Open Galaxies

Radio X-ray Binaries

Globular Astrometry
Clusters

Principal Probabilistic Surfaces

Dendrograms

Representation of hierarchical structure - HC tree.

HC does not require a fixed number of clusters and produces all possible clustering, given a *measure of dissimilarity* (distance). Every generation of clusters maximizes the between-group dissimilarity.

dissimilarity ≡ (metric, linkage strategy)

Metrics:

Euclidean, Manhattan, Mahalanobis, maximum, etc.

Linkage strategies:

complete, single, average, etc.

KISS Study Program - 6/9/11

Distance: euclidean; linking strategy: complete

Distance: euclidean; linking strategy: complete

Distance: euclidean; linking strategy: complete

Labels to pick clusters

Other measured quantities, called "labels" (continuous or discrete) are separated into bins (if continuous) and used to pick those cluster(ing)s which seem interesting.

 L_X , HR, Γ , n_h , X-ray/optical ratio, X-ray time variability, radio morphology (if available)

Discriminating clusterings

The score, a modified version of the "total variation" of a feature vector:

$$S_{TOT} = \frac{\sum_{i=1}^{N_{Cl}} S_i}{N_{Cl}} = \frac{\sum_{i=1}^{N_{Cl}} \left(\sum_{j=1}^{K-1} ||f_{ij} - f_{i(j+1)}|| \right)}{N_{Cl}}$$

Scores for single labels and clusters

Score distribution for HC clustering, relative to HR.ms. label

Total 0.611 0.58 0.547 0.564 0.609 0.596 0.573 0 0 0 0 0 0 တ (1) 0 0 0 0 0 1 (1) ∞ (1) 1 (1) 0 1 (1) 0 0 0 0 / (2) 0 0 0 0 0.4 9 (1) (1) (2) (5) 0.333 0 0 0 1 (1) 0.4 1 2 (3) (2) (5) (3) 1 (1) 0.4 0.611 0.333 0.4 1 (3) 4 (18)0.333 0.611 0.611 0.611 0.611 0.4 က (1) (3) (18) (18)(18)(18) (20)0.333 0.464 0.464 0.478 0.478 0.4 0.556 $^{\circ}$ (20)(3) (28)(28)(23)(23)(9) 0.524 0.458 0.458 0.458 0.458 0.4 (70)(24) (24)(24)(24)(15)(42)5 7 3 6 8 9 Clustering

Cluster index

Score distribution for HC clustering, relative to HR.hs. label

Scores for clusterings

Clustering

KISS Study Program - 6/9/11

Experts for Zphot

Experts for other problems

Conclusions

Results for the first dataset and Chandra COSMOS survey with HC

Open issues:

clustering with upper limits/no detection/missing data (model based? simulations?)

labels "binning": is there a data-driven way to accomplish this? Coclustering is being explored.

Integration of different methods in a Gated Expert model:

example 1: template fitting and machine learning experts for z_{phot} calculation.

example 2: extraction of candidate quasars from optical photometric quasars.