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astronomical datasets: the case of AGNS In
the Chandra Source Catalog and unsupervised
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Motivations

Characterization of the distribution of AGNs in a high dimensionality parameter space
obtained by combining multi-wavelength data and study of their X-rays properties.
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The primary purpose of this study is to obtain a possible census of AGN behavior in
the 13-dimensional features space of X-UV-optical-IR-Radio photometry, and pick up
outliers and constrain their nature.
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The approach

Unsupervised clustering in a high dimensional features space
AND

use additional information (labels) to identify interesting
cluster(ing)s

IN ORDER TO

derive new high dimensional correlations and/or expand known
correlations to other bands, and/or spot unusual behaviors

(outliers).
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Statistical issues

Few points for a large space

> 10 dimensional features space 3

102~103 sources Very low specific density

Upper limits & Clustering

Inclusion of sources with no detections but reliable upper limits.

Outliers vs Clusters

Most clustering methods tends to prefer the selection of either well
populated homogeneous clusters or to sparse clusters/singletons (outliers).
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The datasets

1) “Large area surveys” sample

SDSS quasars (9262)

 sbss —— ukipss \
| (74051
‘ GALEX \

N cSC |----- CSC
(112) (195)

(detections) (upper limits)

2) Chandra COSMOS X-ray survey

3) SWIRE
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1) “Large area surveys” sample

The datasets
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Multiple techniques

Hierarchical Clustering (K-means)

A Varx
Inbund aaaaa

Self-Organizing Maps (SOM) | e o

Principal Probabilistic
Surfaces
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Multiple techniques

Hierarchical Clustering (K-means)
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Dendrograms

Representation of hierarchical structure - HC tree.

HC does not require a fixed number of clusters and produces
all possible clustering, given a measure of dissimilarity (distance).
Every generation of clusters maximizes the between-group

dissimilarity.
dissimilarity = (metric, linkage strategy)

Linkage strategies:

complete, single,
average, efc.

Metrics:

Euclidean, Manhattan,
Mahalanobis, maximum, etc.
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euclidean, complete

euclidean, ward

euclidean, single
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Distance: euclidean; linking strategy: complete
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Distance: euclidean; linking strategy: complete
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Distance: euclidean; linking strategy: complete
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Labels to pick clusters

which seem interesting.

Other measured quantities, called “labels” (continuous or discrete) are
separated into bins (if continuous) and used to pick those cluster(ing)s

Lx, HR, I, nn, X-ray/optical ratio, X-ray time variability,
radio morphology (if available)
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Discriminating clusterings

The score, a modified version of the “total variation” of a feature vector:
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Cluster index

Scores for single labels and clusters

Score distribution for HC clustering, relative to HR.ms. label Score distribution for HC clustering, relative to HR.hs. label
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Label name

HR.hs. HR.ms.

L.b.

Scores for clusterings

0.608

0.627 0.721 0.757 0.773 0.716 0.656

4 5 6 7 8 9
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Experts for Zphot

Fuzzy k-means
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Experts for other problems

Fuzzy k-means
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Conclusions

Results for the first dataset and Chandra COSMOS survey with HC

Open issues:

clustering with upper limits/no detection/missing data (model based?
simulations?)

labels “binning”: is there a data-driven way to accomplish this? Co-
clustering is being explored.
Integration of different methods in a Gated Expert model:

example 1: template fitting and machine learning experts for zpnot
calculation.

example 2. extraction of candidate quasars from optical photometric
quasars.
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