

Time-Domain Astronomy ?

Baback Moghaddam baback@jpl.nasa.gov Machine Learning Group

Classical (Bio)Statistics

Jerzy Neyman

(1894 – 1981)

- Polish / American Statistician
- Founder of Hypothesis Testing
- Co-Inventor of Confidence Intervals
- Neyman-Pearson Lemma

(with his advisor Egon Pearson)

" The trouble is that what we [statisticians] call modern [orthodox] statistics was developed under strong pressure on the part of biologists. As a result, there is practically nothing done by us which is directly applicable to problems of astronomy." -- Jerzy Neyman (late in his life)

Modern Biostatistics

"In academia, the Bayesian revolution is on the verge of becoming the majority viewpoint, which would have been unthinkable 10 years ago."

from The New York Times, January 20th 2004

- Bradley P. Carlin

Mayo Professor of Public Health Head of Division of Biostatistics University of Minnesota

Modern Biostatistics

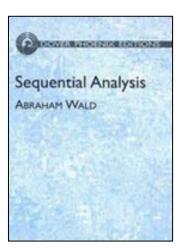
- Pathologies of Orthodox Statistics
 are more acknowledged nowadays
- Tests of statistical significance and design of clinical trials are now increasingly Bayesian
- Journals banning use of *p-values*
 - The Lancet
 - Medical J. of Australia
 - The British Heart Journal
 - American J. of Public Health
 - Int'l Committee of Medical Journal Eds

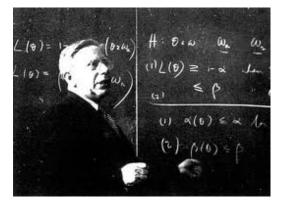
Sequential Analysis

Abraham Wald (1902 - 1950)

- Hungarian mathematician
- Fled Nazi Europe in late 1930s
- Invented Sequential Analysis

doing QC for Allied bombers in WW2

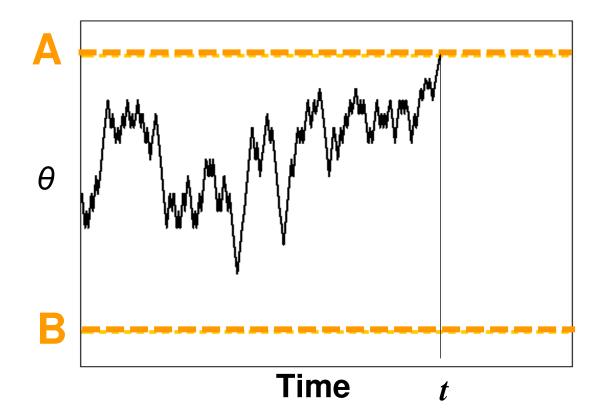




- Wrote classic text in 1947
- Sequential Probability Ratio Test (SPRT)

Optimal Decision Policy

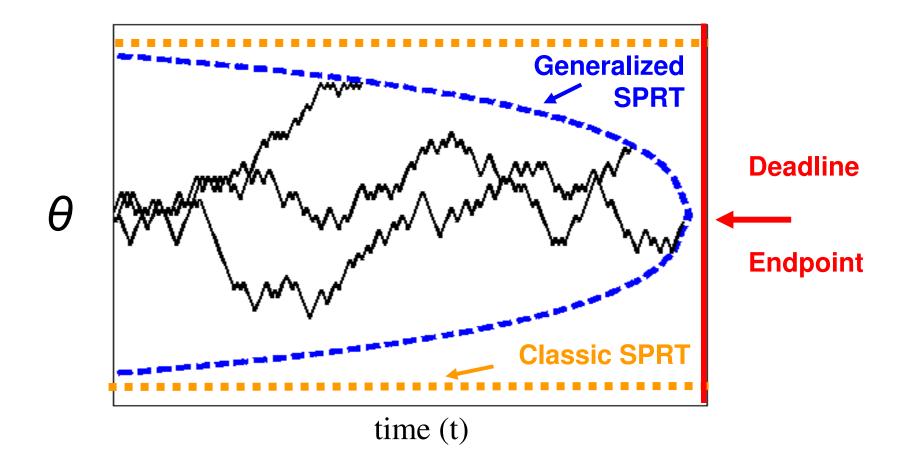
Wald & Wolfowitz (1948) showed that the optimal policy is to stop when θ exits an interval [A,B] and to choose the more likely hypothesis

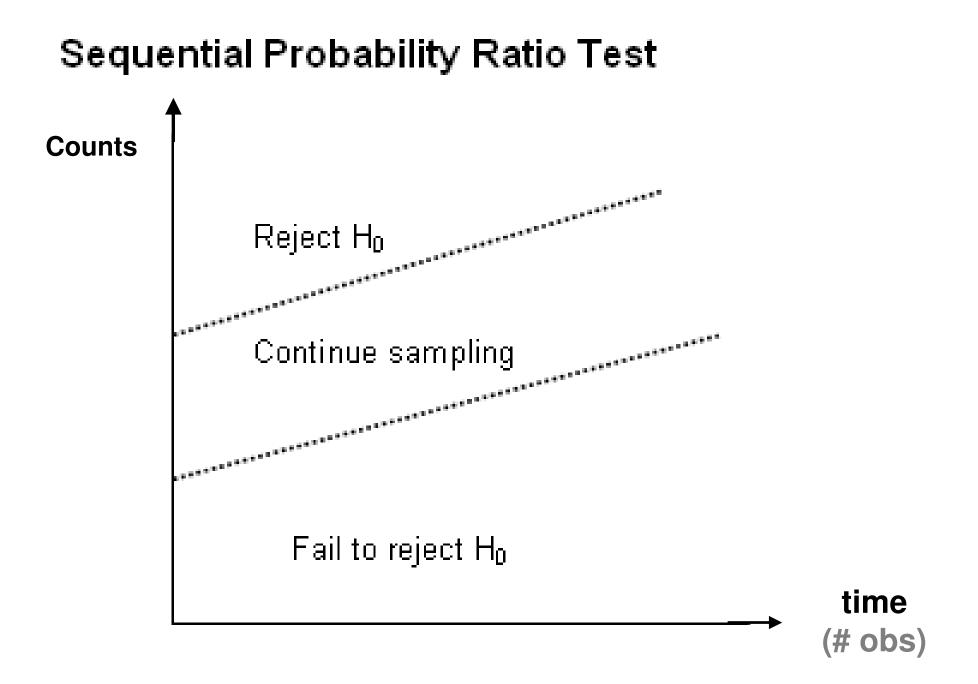


Sequential Probability Ratio Test (SPRT)

Optimal Decision Policy

The optimal policy with a **time-penalty** is to stop as soon as θ exits a region that narrows with time.

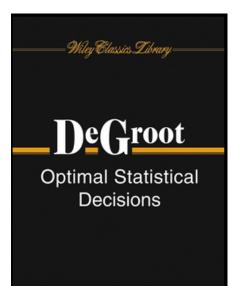




Optimal Decisions

Morris DeGroot

(1931 – 1989)



- American Statistician / CMU Professor
- Extended and formalized Wald's SPRT
- Bayesian Sequential Decision Making
- Wrote seminal text book in 1970
- Optimal decision algorithms
- For example, **Backward Induction** (BI)
 - solves the problem "backward in time"
 - also used in Dynamic Programming
 - unfortunately has exponential complexity

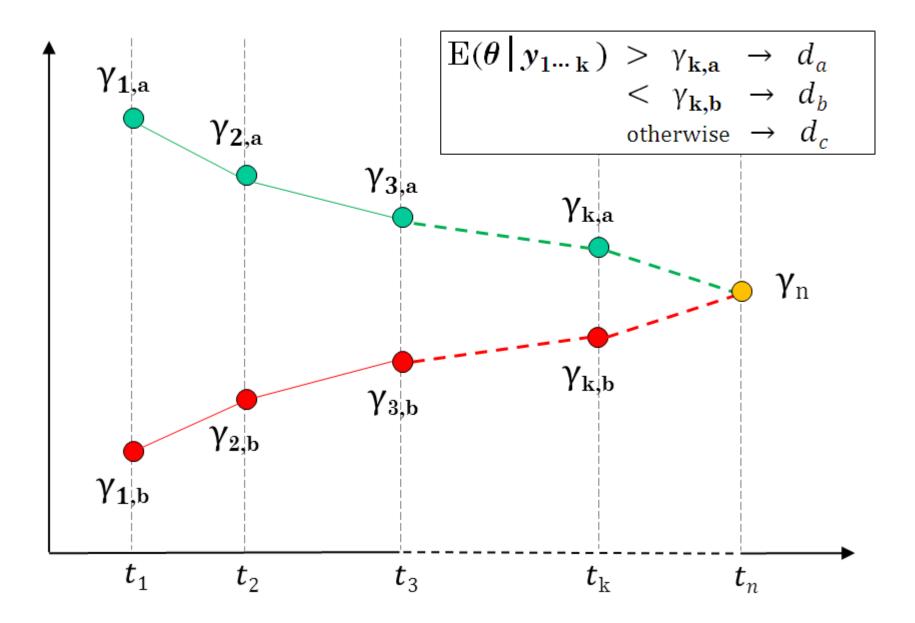
Sequential Decision Theory

- Observations "trickle-in"
- Update current beliefs
- Must "act" (make decisions)
- Which leads to losses
 - timeliness (efficiency)
 - decision-induced costs
 - various domain-specific trade-offs
- Need an optimal policy (usually beforehand)
 minimize posterior expected loss

 $\{ \boldsymbol{y}_{i} \} \quad i = 1 \dots k$ $p(\boldsymbol{\theta} \mid \boldsymbol{y}_{1}, \dots, \boldsymbol{y}_{k})$ $\boldsymbol{d}_{a}, \boldsymbol{d}_{b}, \boldsymbol{d}_{c}$ $\boldsymbol{L}_{a}, \boldsymbol{L}_{b}, \boldsymbol{L}_{c}$

Sequential Hypothesis Tests y_1 y_3 \boldsymbol{y}_2 d_c wait d_c wait $p(\theta | y_1)$ $p(\theta | \mathbf{y}_{123})$ $p(\boldsymbol{\theta}|\mathbf{y}_{12})$ $cost C_1$ cost C₂ $d_{\rm b}$ d d_{a} $d_{\rm b}$ $d_{\rm b}$ В В В $E[\boldsymbol{l}_{3}(\boldsymbol{d},\boldsymbol{\theta})|\boldsymbol{y}_{123}]$ $E[\boldsymbol{l}_1(\boldsymbol{d},\boldsymbol{\theta})|\boldsymbol{y}_1]$ $E[\boldsymbol{l}_2(\boldsymbol{d},\boldsymbol{\theta})|\boldsymbol{y}_{12}]$

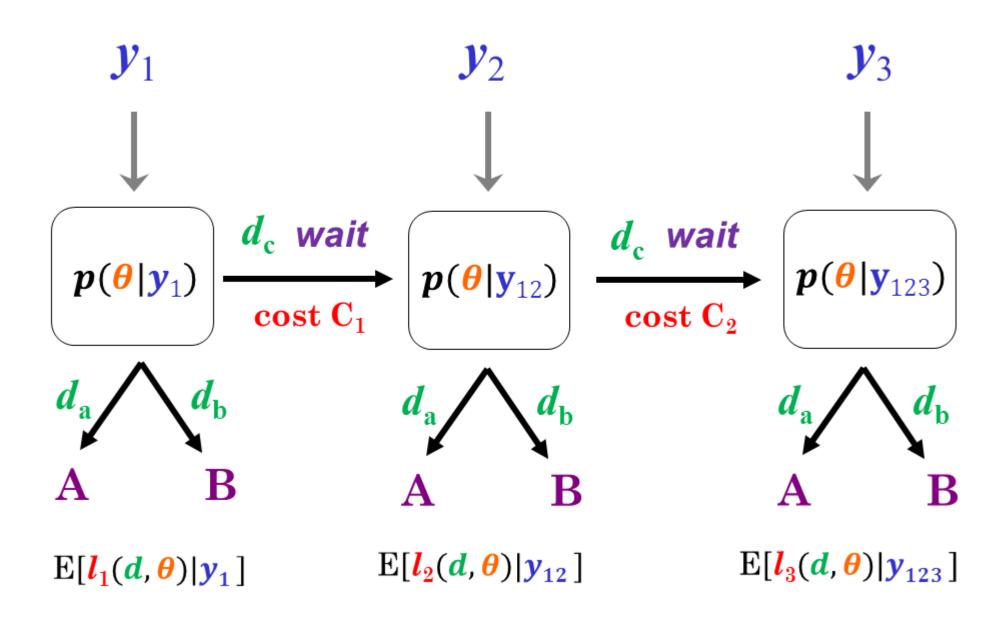
Sequential Hypothesis Tests



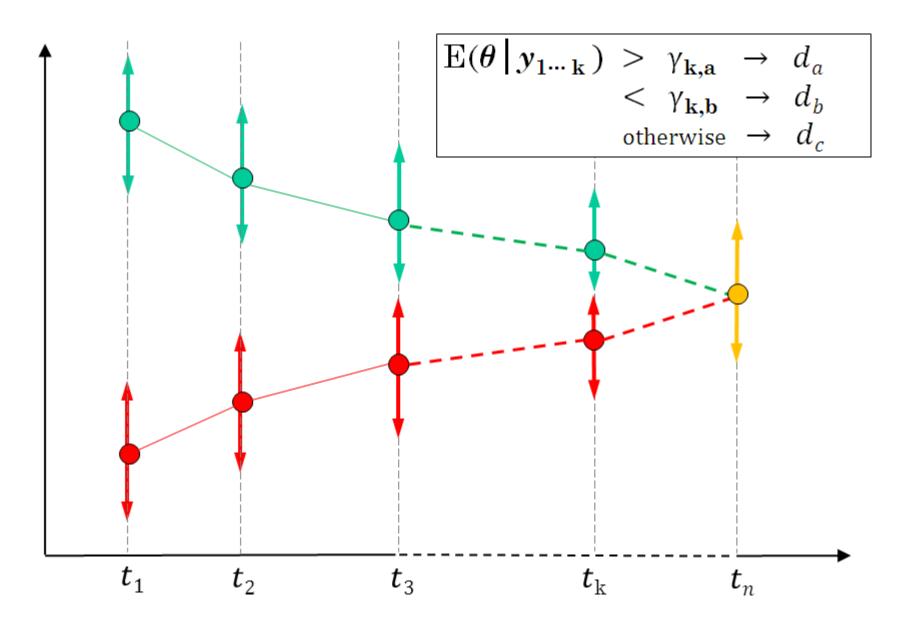
Alternative to Bl

- For ~ 30 years **BI** was the best solution
- Then a new method: Forward Sampling
 - Carlin, Kadane and Gelfand, "Approaches to Optimal Sequential Decision Analysis in Clinical Trials," *Biometrics*, 54, 964-975, 1998
- Forward (generative) Monte Carlo sampling
- No complex integration required
- Handles arbitrary loss functions
- Complexity is **linear** in **#** of decision points

MC sample : $\{\theta, y_1, y_2, y_3\} \sim p(\theta, y_1, y_2, y_3)$



min E[total loss] wrt $\{\gamma_{k,d}\}$



Forward Sampling vs. Bl

- Complexity is linear vs. exponential for BI
- FS finds the **optimal** policy (same as BI)
 for single-parameter exp-family models, *etc*
- Unlike BI, FS is a (parallelizable) *continuous* optimization problem (grid search, ICM, *etc*)
- FS offers far greater flexibility in terms of loss functions & probability distributions

for further inspiration ...

