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VI. The emerging hypothesis of ‘optical types’

Clearly, remote sensing today offers many innovative tools
for assessing PFTs at a range of scales. To fully realize the
potential of these technologies, the data must be combined
with ecological theory linking structural, physiological and
phenological traits based on resource constraints. Remote
sensing enables novel approaches to the assessment of
PFTs based on optical principles. This linkage leads us
directly to the concept of ‘optical type’ and the related
hypothesis that functional types can be distinguished lar-
gely on the basis of optical properties detectable by remote
sensing as conceptualized in Fig. 11. If the resource space
(moisture, nutrient, light, temperature, etc.) can be defined
in terms of n-multivariate axes, analogous to principal
components, then the goal is to orient the axes in the opti-
cal space such that they map onto the axes of the resource
space.
In essence, this concept builds on the ‘functional conver-

gence’ hypothesis and begins to develop the theoretical basis
to explain why remote sensing works as reliably as it does
(Field, 1991). To put it another way, plants are essentially
solar energy factories with their canopies structured to opti-
mize the capture of light within existing resource constraints
(Ehleringer & Werk, 1986). Consequently, by inverting the
view and looking down from above, remote sensing directly
assesses key plant structural and physiological features that
readily reveal resource constraints, and can be used to
explore the concept of functional type from a fresh perspec-
tive. Because this concept of optical type is based on funda-
mental physical principles (e.g. radiative transfer theory and
principles of spectroscopy), which are linked to ecological
theory, it provides a potentially more rapid, uniform,
scalable approach to the problem of measuring functional
types than is possible from field observations alone.

According to our hypothesis of optical types, the resource
space axes that define optically distinguishable functional
types (Fig. 1) can be described by structural, biochemical or
physiologically significant constituents detectable with new
remote sensing technologies. At the leaf level, these bio-
chemical constituents include pigments (chlorophyll, carot-
enoids and anthocyanins), plant water, nitrogen and
structural components (e.g. lignocellulose). At the canopy
or stand level, the relevant signals also include leaf area
index, leaf and branch clumping, leaf orientation, canopy
height, foliage volume and plant density, which are presum-
ably linked to the expression of leaf-level constituents. The
distribution of these features at increasingly larger scales
(e.g. landscapes) and across time (phenology) provides a
consistent basis for scaling properties from local to global
scales.
Tests of novel remote sensing tools to assess functional

types remain limited, largely because the technology is new,
but also because the full ecological framework for under-
standing vegetation function has yet to mature or be real-
ized by the respective ecological and remote sensing
communities. Examples of recent attempts to formulate
these links include mapping of nitrogen-fixing invasives
(Asner & Vitousek, 2005), linking optical properties associ-
ated with pigments to photosynthetic capacity (Gamon
et al., 1997), functional mapping of photosynthetic rate
(Rahman et al., 2001; Fuentes et al., 2006) and evapotrans-
piration (Fuentes et al., 2006), studies of functional conver-
gence in arctic vegetation (Shaver et al., 2007) and recent
attempts to distinguish trees from lianas in the tropics
(Sánchez-Azofeifa et al., 2009). In addition, species-level
mapping is now possible, at least for dominant species
having distinct functional roles in ecosystems (Dennison &
Roberts, 2003; Zomer et al., 2009; Santos et al., in press).
Based on multiple traits evident in vegetation optical

properties, there have been a number of recent successful
demonstrations of biodiversity assessment through optical
diversity (Zutta, 2003; Carlson et al., 2007; Lucas &
Carter, 2008; Asner et al., 2009a; Asner & Martin, 2009).
Some of the studies argue that it is possible to characterize
spectral types based on the underlying unique biochemical
signatures, a concept termed ‘spectranomics’ (Asner & Mar-
tin, 2009). It should be noted that these demonstrations of
consistent linkages between biochemistry and optics have so
far been limited to the wet tropics, where seasonal contrasts
are relatively small. Other studies in the seasonally dry tro-
pics (Sánchez-Azofeifa et al., 2009) and in Mediterreanean
climates (Zutta, 2003) have demonstrated that the ability to
distinguish plant types based on underlying spectral features
is strongly dependent on the phenological stages or environ-
mental conditions. In addition, recent studies have demon-
strated that biochemical features in reflectance signatures
are strongly influenced by the three-dimensional structure
of vegetation stands (Barton & North, 2001; Roberts et al.,

Vegetation
structure

Biochemistry
& Physiology Phenology

Optical type

Fig. 11 Proposed concept of ‘optical type’ based on the assessment
of vegetation structure, physiology and phenology – three variables
historically contributing to ecological definitions of ‘plant functional
type’. According to functional convergence theory, these variables
are related in predictable ways (double arrows). All three variables
affect vegetation optical properties (single arrows) and contribute to
the definition of the concept of ‘optical type’, that is, functional
categories accessible from remote sensing (from Gamon, 2008).
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October 2002 1297REMOTE SENSING OF FOREST PRODUCTIVITY

FIG. 5. Spatial distribution of (a) AVIRIS-predicted nitrogen concentrations (g N/100 g foliar biomass) for the White
Mountain National Forest, New Hampshire, USA (see inset of the state of New Hampshire) and (b) aboveground wood
production, as estimated from AVIRIS predicted whole-canopy N concentration.

October 2002 1299REMOTE SENSING OF FOREST PRODUCTIVITY

FIG. 6. AVIRIS-predicted values for (a) whole-canopy ni-
trogen concentration in relation to measured values for 32
forest stands from the Bartlett Experimental Forest, New
Hampshire, USA, not included in the multi-scene AVIRIS
calibration (R2 5 0.71, SEE 5 0.19) and (b) aboveground
wood production in relation to independent measures from
the Hubbard Brook Experimental Forest (New Hampshire,
USA; solid circles) and Cone Pond (New Hampshire, USA;
open circles and triangles) watersheds (R2 5 0.86, SEE 5
31.49). Measures from Hubbard Brook represent two mea-
surement periods, 1956–1960 and 1961–1965. In both panels,
circles represent broad-leaved deciduous-dominated forest
sites and triangles represent needle-leaved evergreen-domi-
nated forest sites; dashed lines represent the 1:1 relationship.

duction of 371 g·m22·yr21. For similar forested stands
at Cone Pond, measured wood production values are
338, 313, and 388 g·m22·yr21 vs. AVIRIS-predicted val-
ues of 357, 317, and 341 g·m22·yr21, respectively.
The larger difference in AVIRIS-predicted vs. mea-

sured wood production values for Hubbard Brook W6
relative to those predicted for Cone Pond may be due
to the much longer time interval between field mea-
surements and AVIRIS image acquisition at Hubbard
Brook W6 than at Cone Pond, and to mean stand age
at time of field measurement. Stands at Hubbard Brook

W6 were between 40 and 60 yr of age at the time of
measurement in the early- to mid-1960s (stands at Cone
Pond were more than 100 yr old at time of measure-
ment), thus the apparent reduction in the rate of forest
production at Hubbard Brook W6 detected via remote
sensing may reflect a natural successional or age-re-
lated decline (see Gower et al. 1996) in the rate of
forest growth as this forest approaches maturity, i.e.,
stand ages of 80–100 yr in northern hardwood forests
of New England (Hornbeck and Leak 1992).
Although our analysis was not designed to address

this question directly, results from this and a related
study indicate several potentially competing mecha-
nisms by which growth rates might change over time.
In forest ecosystems, succession typically involves ear-
ly dominance by species with a suite of associated
traits, including high foliar nitrogen, high photosyn-
thetic capacity, low shade tolerance, high relative
growth rates, and short life-span (Bazzaz 1979, Tilman
1988, Reich et al. 1992). Species characteristic of later-
successional communities tend to exhibit contrasting
properties (e.g., lower foliar N, increased shade tol-
erance, etc.) indicative of reduced rates of physiolog-
ical activity and increased life-span. Foliar N concen-
tration for the species examined in our study are con-
sistent with this pattern, with early successional species
(e.g., pin cherry and paper birch) tending to have higher
foliar N concentration and shorter life-spans than later-
successional, shade-tolerant species such as sugar ma-
ple and American beech (Smith and Martin 2001, Ol-
linger et al. 2002). Given the canopy N-productivity
trends shown in Fig. 2, we might expect that pro-
ductivity should decline over time given the increas-
ing dominance of species that generally have lower
foliar N.
However, this explanation is relatively simplistic and

ignores variation in foliar N that can occur within spe-
cies in response to differences in soil properties and
disturbance history. In a study that focused on patterns
of N cycling in White Mountain forest ecosystems,
Ollinger et al. (2002) examined species-level leaf N
concentrations with respect to soil N availability and
found that both may vary as a function of stand age
and history. For deciduous stands, leaf N concentration
for a given species were often higher in old and rela-
tively undisturbed stands than in younger stands of
similar species composition in earlier stages of recov-
ery from some major disturbance (clear-cutting or fire).
This was attributed to disturbance effects on N min-
eralization. In other words, while there are differences
in foliar N concentration between species that vary
predictably over the course of succession (and may be
reflected through time in forest growth rates), large
differences in foliar N concentration can also occur
within species due to disturbance history and soil fer-
tility gradients. Variation in canopy N concentrations
across the White Mountain region as estimated from
AVIRIS spectral response integrates the effects of these

230 Green et al.

Figure 3. A depiction of the AVIRIS
sensor is shown with the major subsys-
tem used to acquire spectral images of
the Earth’s land, water, and atmo-
sphere environments.

located at the exit of the foreoptics in front of the fiber diameter optical fibers with 0.45 numerical apertures.
These fibers transmit the light to the four spectrometersoptics. This shutter closes for the nonimaging portion of

each scan line to allow measurement of the dark signal that are used to cover the spectral range from 400 nm
to 2500 nm. Silica glass fibers are used for the rangelevels. Sixty-four samples of dark signal are averaged for

each scan line. Averaging is required to suppress the sin- from 400 nm to 1300 nm while Zirconium fluoride glass
fibers are used from 1300 nm to 2500 nm. These highgle sample noise in the dark signal.

Light leaving the foreoptics is focused on four 200-lm numerical aperture exotic glass fibers were specifically

Figure 4. A 1.0 nm spectral reso-
lution modeled upwelling radiance
spectrum is given for the Ivanpah
Playa, California calibration target
in 1997.
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by community differences, plant form is still linked in large part to
environmental gradients.
Similar to our previous work at Jasper Ridge (26), land parcel

and presumably land use history played a significant role in pre-
dicting spatial distributions of most of the canopy chemical traits,
despite the coarseness of the previous ownership map. Differences
between parcels explained 4% of the variation in Nmass and Cmass,
12% of the variation in WL, and 5% of the variation in WC (Table
1). The small but significant role of land use in this system, which
has been protected for much of the past century, highlights the
importance of incorporating information about anthropogenic
influences into studies of landscape heterogeneity.
In all, these results show that, at Jasper Ridge, there is not

a perfect relationship between plant traits and the environment,
and that some traits are more closely tied to environment than
others. Although there are clear patterns in the vegetation struc-
ture reflected in WC, like dense forest on the north- and east-
facing slopes and chaparral on the southwest-facing slope, there
are also many exceptions. There are small patches of chaparral on
the north-facing slope and stands of trees facing south. The causes
of these variations could be unmeasured environmental gradients,
like variations in edaphic properties, but they could also be the
result of past fires, land use decisions, or fluctuation-dependent
processes (9) like a random dispersal event paired with good
conditions for plant establishment.

Within-Community Heterogeneity. Visual comparison of the plant
community map to the CAO AToMS imagery and the trait maps
(Fig. 3) reveals the chemical diversity between and within com-

munity classes. Although the plant community map explained a
large fraction of the variation in these traits (46–61%), the
chemical maps show much within-class heterogeneity. Commu-
nity classification maps are necessarily generalizations, and some
of this variation may result from PFT variation (e.g., a deciduous
tree in a largely evergreen class), but the large amount of un-
explained variation in the trait models suggests that much of this
heterogeneity could be caused by variation between and within
species, especially within particular plant communities. To test this,
we used the field-collected trait data and compared the coefficients
of variation (CVs) between species, and then between groups of
species corresponding to plant communities (Tables S1 and S3).
Although our sample sizes were relatively small, these data can
provide some insight into intra- vs. interspecific heterogeneity.
On average, for Nmass, variation within species was equal to

71% of the variation within communities, whereas only 50% and
51% of the variation in Cmass and WL was within individual
species. Variation in Nmass is less well constrained within species
in this system than are variation in Cmass and WL; however, there
are subtle differences between the traits. In Nmass, most of the
community-level CVs are higher than nearly all the species-level
CVs; however, the coastal scrub and Salix forest communities
have very low CVs, suggesting that plants in these communities
are experiencing very strong habitat filtering (only a narrow
range of trait values can persist in these areas) or are not strongly
N-limited and so are not in competition for this nutrient. For
Cmass, there is a much larger difference between intraspecific and
community-level CVs, suggesting that this trait is controlled at
the species level. The only community-level CV that is notably

Fig. 3. (A) True color image of Jasper Ridge shows areas that were masked in white. Yellow box highlights region shown in B–D. (B) Zoomed-in true color
map. (C) Vegetation map (legend numbers correspond to communities listed in Table S4; “10” represents developed area). (D) Red/green/blue composite
image shows three of the plant traits.
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Figure 2. Observed vs. predicted values for the 500 PLSR permutations to predict Vc30,pixel (top, units !mol 243 
[m-2 ground area] s-1) and Ev,pixel (bottom, units kJ mol-1 K-1). Cross-validation results are for the 25% of 244 
the data withheld from each of the 500 permutations, with error bars in the x-axis direction showing the 245 
range of prediction estimates for each data point across the 500 permutations, and error bars in the y-246 
direction showing the range of the parameter estimate derived from the field data based on derivation of 247 
Vc30 following Long & Bernacchi (2003) and Ev using the Arrhenius equation. 248 
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