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Measurement Approach — OCO-2/3
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What does OCO-2/3 measure”? Reflected sunlight
in 3 spectral bands yield column averaged CO»
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Column Measurements of CO,

The CO, profile is affected by:

e Photo-synthesis (removes CO,)

e Respiration (produces CO,)

e \Vertical transport (re-distributes CO,)
e Advection

The interplay of these processes
causes the CO, profiles to vary
diurnally

Vertical arrows at the represent
column-averaged CO, mole
fractions.

Their diurnal variation is much
smaller than that of the surface CO,

and much less sensitive to vertical
transport.
Column-averaged CO, is more

directly related to regional surface
exchange
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Orbiting Carbon Observatory - 2
Atmospheric Carbon Dioxide Concentration (Sept 2014 — Sept 2015)

e ; - ~
- - :

S

e
e ﬁi’w
»

XCO2 Parts Per Million by Volume

B 000 Global level 3 Data 09/06/2014 to 09/23/2014

390 392 395 397 400 402 405



0CO-2 Footprint (spatial index)

The next steps...
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Comparison of TCCON and OCO-2 XCO2
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Changes in the Glint/Nadir Scheduling
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alternate orbits ND GL, some GL fixed

*QOriginal sampling approach
—Alternates between glint and nadir

on successive 16-day ground
repeat cycles

—Precludes observations of oceans
and high latitude continents for 16-
day periods

*Revised glint/nadir strategy:

—Step 1: Alternate between glint and
nadir on successive orbits that
iInclude both land & ocean

-Step 2: For orbits that are
predominately over ocean, always
stay in glint

*Changes implemented in early
summer 2015



What’s next? ... OCO-3 ...

* The orbit of the International
Space Station does not have a
simple, repeating pattern

- Measurement time of days spans
all sunlit hours

« OCO-3 on ISS would require a
pointing mirror system to make
validation measurements and to
see the bright reflection off the
ocean (glint). OCO-2 points the
whole spacecraft to do this.

OCO-3 sampling varies in space and time Pointing Mirror required for use in ISS




Comparison of OCO-2 and OCO-3

0CO-2

OCO-3 orbit tracks (in green)

Latitudinal coverage +/- 80 degrees +/- 52 degrees (on ISS) . — — :
Local time of day sampling and ~1:30pm with 16 day routine Ranges across all sunlit hours with
repeat and repeated measurements variable revisit (O to multiple per day)
Land Sampling Every day (using glint and nadir  Every day (transition to nadir over
measurements) land masses each orbit)
_ _ DoY 75
Glint/Ocean Sampling 16 days on/16 days off Every day (transition to glint over

oceans each orbit)

Target mode capability Yes, with spacecraft pointing Yes, expanded with pointing mirror
assembly
Polarization approach Keep instrument slit in principal Gather measurements over wide
plane (we thought.....) range of polarization angles
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Terrestrial Carbbon Cycle Processes can be Studied with Mapping Mode

OCO-2 fluxes estimates are the size of states. Process
studies are on scale of 1km. OCO-3 can aid in bridging
between the process scale and the global scale

The Mid-Continent Intensive was a field
campaign to study the uptake of CO, by
crops. OCO-3 measurements would add a
dense dataset at varying times of day to
such process studies.
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Targeted measurements of
the Amazon would be
possible every day,
covering all sunlit hours
over a month.

We could cover a wide
area, or collect repeated
measurements over a
smaller region.




F - Solar Induced
nlorophyll Fluorescence
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- A fraction (1-2%) of absorbed

photosynthetic active radiation
(PAR) is always re-emitted as
chlorophyll fluorescence

 The measured fluorescence at

TOA is:
SIF = PAR - fPAR - ¢

* This is similar to the expression

of gross primary production:

GPP = PAR - fPAR - €p

« Hence:

GPP = SIF - £
€L
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The carbon water cycle link -- water limitation

Flexas et al, 2002, PHYSIOLOGIA PLANTARUM
Daumard et al (IEEE)
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Fig.2. Light response curves of Fs/Fo at six
different gradients of water stress,
determined by their g (in mmolm™2s~!) at
750 umolm~2s~! PPFD. Insert: Fs/Fo vs. g
at 750 pmolm™2s~! PPFD (the vertical line
in the main figure).
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Science highlights from GOSAT

Frankenberg, C. Fisher, J., Worden, J., Badgley, G., Saatchi, S., Lee, J.-E., et al. (2011).
New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity.
Geophysical Research Letters, 38(17), L17706.

A Chlorophyll a fluorescence at 755 nm, June 2009 through May 2010 average B Timeseries
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First quantification of global solar induced fluorescence (SIF) made
possible by GOSAT (Joiner et al; Frankenberg et al)
--> tracks spatial and temporal variability of GPP very well
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One year of OCO-2 data (biweekly averages)
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Long term average

Solar Induced Chlorophyll Fluorescence @ 757nm
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Chlorophyll Fluorescence
Imaging Spectrometer /
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CFIS Example Spectra




OCO-2 underpasses — OCO2 SIF
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Crossed Des Moins

OCO-2 SIF shown
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