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PARTS PER MILLION

We know CO, continues to increase
and by about how much

Atmospheric CO, at Mauna Loa Observatory
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Global carbon dioxide budget
(gigatonnes of CO, per year)
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Uncertainty in Land Carbon Flux

* Though we can estimate .

the magnitude of the GON\; Gross Primary’
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We think we understand ocean CO,
flux better... but do we?

Observational
estimates
computed from
ocean pCO,
samples

Climatology
based on ~3
million samples
from 1970-2007
compiled by
Takahashi et al.
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Fossil Fuel Emissions

Data: CDIAC/GCP 2012-2013
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Can we measure fluxes directly?

* Model differences are large because of

lack of direct observations

* Flux towers provide valuable

information on local scale fluxes but

many regions not covered

US Forest
Service Towerks
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CO, Inversion Setup
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GEOS-5 Nature Run
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Movie available at http://svs.gsfc.nasa.gov/goto0?11719



Current observing systems for CO,

Surface
observations
coordinated by
NOAA designed
to monitor
background levels
of CO,

Few observations
is regions with
greatest flux
uncertainty
including tropics,
high latitude land
masses
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Current observing systems for CO,

901

o o v e e
Y o e 3

the mid-troposphere but
has very limited sensitivity
near the surface where
flux signals are the
strongest




Current observing systems for CO,

Carbon dioxide SCIAMACHY/ENVISAT Jan-Mar
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ESA instrument SCIAMACHY
among the first space-based
CO, measurements...
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http://www.iup.uni-bremen.de/sciamachy/



Current observing systems for CO,

GOSAT co, (ppm) 200907 GOSAT CO, (ppm \910

Japan’s GOSAT satellite
launches in 2009 has
provided the best satellite
CO, dataset to date with
considerable improvements |
in accuracy

Passive technique requires
sunlight, limits coverage in
persistently cloudy regions, | .
high latitudes during winter |




OCO-2 - Spring 2015

Orbiting Carbon Observatory - 2 001422
XCO2 Data (5/14/15 - 7/15/15)




Big questions remaining for the
carbon cycle

* Why do bottom-up land models
underestimate the land carbon sink?

* Relative magnitudes of sink in N. America/
Tropics?

 How will land carbon flux change in the
future?



New Assessment;

Carbon pools in the northern circumpolar permafrost region

1 Pg = 1 billion tons or 105 g

Permafrost | 0-30 cm | 0-100 cm
zones
Continuous 110.38 298.75
Discontinuous 25.5 67.44
Sporadic 26.36 63.13
Isolated 29.05 67.10
| Patches
| Total 191.29 | 496.42
Soil or deposit type | C stocks
Soils 0-300 cm 1024
&5/;01'1 Organic Carbon Conten‘t“ Continuous (90% - 100%) Yedoma sediments 407
E?ﬂfﬁﬁ;& G | | Deltaic deposits 241
> 50 kg/m' o8| Treeline . Isolated Patches (<10%) Total 1672

Global
qubon Tarnocai C, JG Canadell, EAG Schuur, P Kuhry, Mazhitova G (2009) Soil organic carbon pools in the northern circumpolar permafrost region.
Project Global Biogeochemical Cycles 23, GB2023, doi:10.1029/2008GB003327.
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Results from The 2015 Carbon-Climate
System Workshop in Norman, OK

Developing and sustaining a time series of global atmospheric CO,,
CH,, and CO concentrations with sufficiently small and understood
biases at spatial and temporal resolutions that allow rigorous
evaluation and improvement of models needed to reduce
uncertainty in future predictions/projections.

Improving attribution and quantification of patterns of carbon
emissions, thereby reducing the growing uncertainty of
anthropogenic emissions of carbon.

Acquiring the critical measurements that allow attribution of fluxes
to specific mechanisms and processes within terrestrial and marine
carbon cycles. Many of these measurements are expected to be
priorities for disciplines such as terrestrial ecosystems, ocean
biology, biogeochemistry, and climate.

Addressing how the natural dynamics of the carbon cycle and
human activities feedback to influence future trajectory of the
atmospheric carbon fraction.



How do we decide the best
measurement approach?

* Remote sensing techniques:

— Passive systems — observations of near-IR spectra in
reflected sunlight

— Active systems — uses laser for illumination

e Orbital options:

— Low Earth Orbit — global coverage, but observations of
particular location limited

— Geostationary Orbit — more frequent observations but
limited coverage

e How do we decide what we need?

— Modeling teams currently working to define Observing
System Simulation Experiments (OSSEs) to determine
benefits/weaknesses of different approaches



