

Topics

- ISS Overview
- General Features
- Specific Locations
- Environments
 - Natural
 - Programmatic

ISS Overview

General Features

- 51.6° orbit, 91-minute period
- 340 440 km altitude
- Oriented for orbital stability
 - Station oriented to Earth mostly
 - Solar Panels/Radiators pointed to/away from the Sun
- Pointing Accuracy
 - ± 0.08 ° for roll & pitch and ± 0.23 °/ ± 0.02 ° yaw (bending of truss)
- Communications with Earth
 - via TDRSS, : ~ 90%

Columbus External Payload Facility (CEPF)

- 4 external sites (2 available to NASA)
- 0.86m x 1.2m baseplate x 1.2m tall
- Mass < 227 kg

- Standard attachment mechanism
 - Actuatable by crew or robotic tools
- 120Vdc, 1,250W
- MIL-STD-1553B, 10Mbps Ethernet

ExPRESS Logistics Carrier

- 6 ELC sites, 2 Science Payloads/ELC
- Same envelope, mass, services as CEPF
- ELC were integrated on the ground
- Payloads can be removed & replaced on orbit

ExPRESS Logistics Carrier

Kibo: Japanese Experiment Module – Exposed Facility

KISS Exoplanet Workshop

JEM-EF Payload

Unique interfaces

- To JEM-EF (Payload Interface Unit)
- To launch vehicle (Payload Attachment Mechanism)
- To ISS Arm (Grapple Fixture)

Mass

- Nominal: 500 kg

Heavy: 2,500 kg (2 sites)

120 Vdc; 3,000W

MAXI – JEM-EF Payload

ISS Locations: Summary

ISS Location	Mass (kg)	Volume (m³)	Dimensions (m)	Voltage (VDC)	Power (W)	MIL-STS- 1553B	Ethernet (10 Mbs)	Hi Rate (100 Mbps)
Columbus	227	1.2	0.8 x 1.2 x 1.2	120	1250	٧	٧	
Kibo (JEM-EF)	500	1.5	1.85 x 1.0 x 0.8	120	3000	٧	٧	٧
ELC	227	1.2	0.8 x 1.2 x 1.2	28	750	٧	٧	

Nov. 12, 2009

Environment

- Thermal
 - 3K sink, 1420 W/m²
- Contamination
 - < 1 µg/cm/year
- Radiation
 - trapped protons, Galactic Cosmic Rays
- Orbital debris & meteroids

JAXA, STS-91 Space Radiation Environment Measurement Program

Barth J., "The Radiation Environment", NASA/GSFC Presentation.

Programmatic Environment

Payload Integration (ISS Payloads Office, Code OZ)

- Formal "3-year" development process
- **Safety Process**
 - Driven by launch vehicle
 - Generic & unique hazards (pressure vessels, lasers, batteries)
- Launch Services
 - At no cost to Payload Developer
- **Analytic Integration**

Summary

Above the atmosphere but ISS carries its own Long-duration mission in 30-minute snips Mass is not at a premium only small envelopes You don't have to coordinate launch ELC5 but you have to worry about it later Unobstructed zenith views ESP-3 most of the time ELC1 ELC4 ODTML, FAC COL EF **SOLAR EUTEF** (return on 17A & 19A) ASIM **ACES** MISSE 6A & B JEM EF SMILE (Return on 17A) 12/19/2007 MAX SEDA-AP Approved for Public Release

Acknowledgement

- Much of this presentation was derived from a presentation by Gene Cook (ISS Payloads Office) in December 2007 titled "ISS Unpressurized Payload Accommodations" www.nasa.gov/pdf/206852main_SMEX_Presentations_website.pdf>
- Some information was obtained from the NASA Science and Technical Information Program Office document, "Overview of Attached Payload Accommodations and Environments on the International Space Station" (Nov 2007), http://www.nasa.gov/pdf/190373main_TP-2007-214768.pdf
- The photographs were obtained from the Web
- Additional information can be obtained
 - For Columbus Exposed Payload Facility from:

www.spaceflight.esa.int/users/downloads/userguides/colaccom.pdf

For JEM Exposed Facility from:

http://idb.exst.jaxa.jp/edata/02110/199810K02110040/199810K02110040.html

Backup Slides

Backup: Accelerations

200 E S 150

100

19P Rebook! Start GMT 22-February-2008, 053/17:40:03:000

- 0.2-g, 15-minute reboost
- 2 micro-g quasistatic acceleration
- Dynamic vibration environment

Backup: CEPF Payloads

SOLAR on CEPA

-SOLAR Payload with Integrated Carrier (EVA mass = ~ 800 lbs)

EuTEF on CEPA

- EuTEF (European Technology Exposure Facility) Payload with Integrated Carrier (EVA mass = ~ 752 lbs)

Backup: CEPF Payload Fields of View

-Z: toward zenith

Figure 4.4-5: Columbus-EPF looking -Z, orbital sunrise (left), and orbital noon (right).

Figure 4.4-6: Columbus-EPF looking +Y, orbital sunrise (left), and orbital noon (right).

Backup: ELC Payload Fields of View

-Z: toward zenith

Figure 2.4-8: S3 upper truss, -Z, orbital sunrise (left), and orbital noon (right).

Figure 2.4-9: S3 upper truss, +Y, orbital sunrise (left), and orbital noon (right).

Backup: JEM-EF Payload Fields of View

-Z: toward zenith

Figure 3.4-5: JEM-EF, -Z, orbital sunrise (left), and orbital noon (right).

Figure 3.4-6: JEM-EF, -Y, orbital sunrise (left), and orbital noon (right).

Backup: Launch Opportunities

- Space Shuttle
- HTV
- SpaceX/Falcon 9/Dragon

Dragon

HII-A Transfer Vehicle

Backup: Accommodation Hardware

Mandatory Accommodation Hardware

- JEM EF payload
 - 1. Flight Releasable Grapple Fixture
 - 2. Payload Interface Unit
 - HTV Cargo Attachment Mechanism (HCAM)
 - 4. HTV Connector Separation Mechanism (HCSM)

- FRAM payload (ExPA, CEPA)
 - Flight Support Hardware
 - 2. Adapter plate
 - 3. ExPA or CEPA
 - 4. Passive FRAM
 - 5. PFRAM adapter plate

Thermal Environmental

TABLE 3.5.1.2-1 HOT AND COLD NATURAL THERMAL ENVIRONMENTS

Case	Solar Constant (W/m²)	Earth Albedo	Earth Outgoing Long Wave Radiation (W/m²)	
Cold	1321	0.2	206	
Hot	1423	0.4	286	

TABLE 3.5.1.2-2 INDUCED THERMAL ENVIRONMENTS

Induced Environment	Assumed Parameters		
Beta Angle	+/- 75°		
Altitude	150 nmi. to 270 nmi.		
Attitude Envelope Without Orbiter (1)	Any combination of +/-15° Roll (about X axis) (2) +/-15° Yaw (about Z axis) (2) +15 to -20° Pitch (about Y axis) (2)		
Attitude Envelope With Orbiter Docked to ISS (1)	Any combination of +/- 15° Roll +/- 15° Yaw 0 to 25° Pitch		

Note(s):

¹ The attitude variations include variations in the Torque Equilibrium Attitude (TEA) as well as variations in the ISS attitude from the TEA attitude, both with Orbiter docked, and without Orbiter.

² XYZ axes refer to ISS coordinate system orientation.

Backup: ISS Communications

- All NASA payloads use NASA communication resources
- Ground communications with Payload Operations are via Internet

Backup: Alpha Magnetic Spectrometer

