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Terrestrial ecosystems and climate science
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Geophysical perspective
Atmospheric physics
Fluid dynamics
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The traditional view of climate emphasizes fluid dynamics and atmosphere physics. This view is seen here in clouds and oceans


Terrestrial ecosystems and climate science

Biogeoscience perspective

Effects of ecosystems on climate and
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(Will Wieder, NCAR)

atmospheric composition through:

Energy and water
Carbon cycle
Reactive nitrogen

Chemistry-climate (BVOCs, O,, CH,,
aerosols)

Biomass burning

Land use & land-cover change

Ecology is as important to climate science as is geophysical fluid dynamics
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Presentation Notes
A broader view recognizes the biosphere, its ecology and its biogeochemistry as central to understanding climate


From climate models to Earth system models

Physical representation of climate (circa 1990s)
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Earth system perspective with terrestrial and marine
ecosystems and biogeochemical cycles (circa 2010s)
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Presentation Notes
The biogeoscience perspective is seen in the evolution of physical climate models to Earth system models. The Earth system perspective recognizes the biosphere, its ecology and its biogeochemistry as central to understanding climate. The evolution from physical climate models to Earth system models occurred over the past 30 years. 


Outline of talk
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What are Earth system models and
how are they used?
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o Deforestation/afforestation

o Carbon cycle-climate feedbacks

Reducing uncertainty

o Terrestrial carbon cycle

The path forward

o Model complexity and
technical debt

o Overcoming disciplinary
chauvinism



Earth system models
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Earth system models use mathematical Land is represented by its ecosystems,

formulas to simulate the physical, watersheds, people, and socioeconomic drivers of

chemical, and biological processes that environmental change

drive Earth’s atmosphere, hydrosphere,

biosphere, and geosphere The model provides a comprehensive
understanding of the processes by which people

A typical Earth system model consists and ecosystems affect, adapt to, and mitigate

of coupled models of the atmosphere, global environmental change

ocean, sea ice, land, and glaciers



Terrestrial ecosystems in Earth system models
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ESMs have detailed representation of terrestrial ecosystems at various timescales. This includes the uptake (photosynthesis) and release (respiration) of carbon; emergence and dropping of leaves in spring and autumn; and regrowth of forests following disturbance such as fire or logging. 



Earth system models as a tool for ecological science
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Earth system prediction

What are the consequences of
alternative socioeconomic pathways?

Scientific discovery

Identify ecological processes that
determine climate

Advance theory

Test generality of ecological theories at
the macroscale
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The Earth system perspective recognizes the biosphere, its ecology and its biogeochemistry as central to understanding climate. These models are used for prediction (e.g., alternative socioeconomic trajectories); scientific discover (e.g., ecological processes that determine climate); and to test ecological theories at the macroscale. The evolution from physical climate models to Earth system models occurred over the past 30 years.


Historical land cover change (1850-2005)

Change in tree and crop cover (percent of grid cell)
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Land-atmosphere interactions

Forest have a
low albedo

Svong fluxes
Weak fluxes

g g Cool surfaca
Reduced heating

High R, Decraased rain
e g, T g

Forests are tall
(aerodynamically
rough)

Forests are leafy
and have deep
roots

Strong sensible haat flue
warm, dry

e 111
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Bonan (2016) Annu. Rev.
D”” Ecol. Evol. Syst., 47, 97-121
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Model variability

15 CMIP5 models:
Change in JIA
temperature (°C) with
20th century land-cover
change
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Twenty-first century land-cover change

Mitigation - afforestation
to enhance the terrestrial
carbon sink

Business as usual -
continued deforestation

Lawrence et al. (2012) J. Clim., 25, 3071-95

Change in tree cover (percent of grid cell)

RCP4 5

90N | - | I

GOM -'_ :
30N
.-
308 -

605

_‘_—-._mf‘_m
.

o

R N

=

a0s LN B R L L

180 150W 120W 90W GE}W 30w

0

30E

BOE

| I| II LI
90E 120E 150E 180

anN TR SRR T I R

i =
60N - 3

30N

308

B0S

e

a2y

S —

R

e S

<

2038

180 150W 120W 9O0W 60W 30W 0 30E 60E 90E 120E 150E 180
50 25 10 2.5 1 1 25 10 25 50

Percent of grid cell

12



Carbon cycle
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Atmospheric CO, has increased over the
industrial era as the balance of:

o Fossil fuel emissions
o Land use and land-cover change emissions
o Terrestrial and oceanic sinks

Le Quéré et al. (2018) Earth Syst. Sci. Data, 10, 2141-94

How will the global carbon cycle change in the
future?

Will the terrestrial biosphere continue to be a
carbon sink?




Cumulated land flux (PgC)
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11 Earth system models with RCP8.5
Large uncertainty in cumulative land uptake

Much interest in how to reduce uncertainty
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/ Internal variability \

Sources of uncertainty
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Presentation Notes
Internal: unforced climate variability intrinsic to a given climate state that arises from the coupled interactions of atmospheric, oceanic, terrestrial, and cryospheric processes (ENSO, PDO, etc.). Scenario: a possible pathway for greenhouse gas emissions, based on socioeconomic factors. Model: the mathematical expressions constructed to describe the climate system, the numerical methodology used to solve the expressions, and the parameterizations employed to represent unresolved processes.
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Uncertainty in land carbon uptake due to
differences among models is considerably
larger than the spread across scenarios
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CMIP5 carbon cycle uncertainty
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Sources of uncertainty
o Internal variability
o Model structure

o Scenarios

Hawkins & Sutton (2009) BAMS, 90, 1095-1107
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Lovenduski & Bonan (2017) Environ. Res. Lett., 12, 044020
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CMIP5 carbon cycle uncertainty

Land carbon uptake
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Ocean biogeochemistry is different; similar to that seen in the atmosphere (e.g., temperature)


Process uncertainty

—
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Lombardozzi et al. (2015) Geophys. Res. Lett., 42, 8624-31,
doi:10.1002/2015GL065934

Temperature acclimation

Plants adjust their enzymatic photosynthetic
or respiratory response to temperature as a
result of acclimation to a new growth
temperature over periods of days to weeks.
Acclimation changes the shape and/or basal
rate of the temperature response.

Many other processes

Triose phosphate limitation
Ozone damage

Biological nitrogen fixation
Soil carbon dynamics

N & P limitations

Many, many more ...

O O O O O O
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The rules of life

What are the rules that govern
biological systems across a hierarchy
from biomolecules to organisms to
ecosystems to biomes?

What are the mathematical equations
to describe those rules?

How do we know if our models are
getting better?
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Data will solve the problem

ILAMB benchmarking

Lawrence et al. (2019) J. Adv. Mod. Earth
Syst., d0i:10.1029/2018MS001583
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Net Ecasystem Exchange

CLMS5, but are we getting
the right answer for the
right reason?

Ecosystem Respiration
Soil Carbon
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Evaporative Fraction
Latent Heat

Runoff

Sensible Heat

o Reducing uncertainty is
more insidious than
minimizing differences with
observations

Terrestnal Water Storage Anomaly
Snow Water Equivalent
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Albedo

surface Upward SW Radiation
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Ensemble of land-only CLM historical simulations

3 models X 2 climates

CLM4 Strong N downregulation of GPP; low soil C
CLM4.5 Improved GPP and vertically-resolved soil C POleward,S,h'ft inC .
Less sensitive to N addition
CLM5 Flexible plant C:N; optimal canopy N; cost Higher CO, fertilization
of N uptake

Cimate |

CRUNCEP GCP, Trendy
GSWP3 CMIP6: LUMIP, LS3MIP

Use analysis of variance to examine the
contribution of model structure and climate
forcing to carbon cycle uncertainty

Bonan et al. (2019) Global Biogeochem. Cycles,
doi:10.1029/2019GB006175
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ESM simulations include both climate uncertainty and biogeochemical uncertainty. Here, using land-only simulations to contrast climate and biogeochemical uncertainty



Which model is best?

CLM: 1959-2014
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CLMS5 is improved compared with other
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differences

Bonan et al. (2019) Global Biogeochem. Cycles, doi:10.1029/2019GB006175



Which model is best?

CLM: 1959-2014
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Bonan et al. (2019) Global Biogeochem. Cycles, doi:10.1029/2019GB006175

Cumulative land sink (Pg C)

CLM: 1850-2014
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CRUNCEP reduces land sink compared with
GSWP3

CLM4.5 (CRUNCEP) and CLM5 (GSWP3) are
equally “good” and within uncertainty

24


Presenter
Presentation Notes
CLM4.5 developed using CRUNCEP; CLM5 developed using  GSWP3


GPP uncertainty (2000-2009)

Climate uncertainty (fraction of total variance)
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The current study highlights the importance of climate
forcing in generating carbon cycle uncertainty, even
when the models are forced with best-estimate climate
reconstructions over the industrial era

Bonan et al. (2019) Global Biogeochem. Cycles,
doi:10.1029/2019GB006175
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We do not yet have a complete understanding of where uncertainty arises from


Earth system prediction

REVIEW SUMMARY

EARTH SYSTEMS

Climate, ecosystems, and planetary
futures: The challenge to predict life
in Earth system models

Gordon B. Bonan™ and Scott C. Doney™

Bonan & Doney (2018) Science, 359, eaam8328,
doi:10.1126/science.aam8328

The various models used for climate
projections, mitigation, and impacts
(VIA) overlap in scope and would
benefit from a broad perspective of
Earth system prediction

Not just weather and climate, but also:

Land: Forest and agriculture

Wildfires, forest dieback, crop productivity,

habitat loss, ...

Society
Ecology, hydrology A
& economic models
Im pac ts Timber & forest products Mitigation o .
\ Carbon Co, Forest Mitigation
storage removal | management /
Tree mortality Reduced |Crop
. (60) management
Habitatloss  omissions ESMs
Forest fires  No-till
VIA -= & Climate
Crop yield Albedo
Water use Roughness
Evapotranspiration
Carbon
Reactive nitrogen .
BVOCs Climate
Biomass burning processes

aerosols

\

Research
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Presentation Notes
Scott and I considered this in a recent review for Science. In particular, we talked about the overlap between models used for climate process research, mitigation, and impacts. Rather than seeing these as separate areas of research, we suggested there is an opportunity for Earth system prediction including the biosphere and its resources


Increasing model complexity

Breadth and complexity of land surface models
as documented by NCAR technical notes

1200 T . T T T T
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Bonan (2019) Climate Change and Terrestrial
Ecosystem Modeling (Cambridge University Press)

Do more complexity and more authentic process
parameterizations provide a better model?
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One of the challenges is the ever increasing complexity of the models, shown here for NCAR land surface models. Our technical descriptions have gone from less than 100 equations to over 1700 equations including dynamic vegetation and urban land cover. But it remains unanswered whether more complexity reduces uncertainty.
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A simple carbon cycle model

NFF
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(Cambridge University Press)

First coupled carbon cycle-climate model
at NCAR using CASA’ adaptation of CASA
biogeochemical model

o Simple 12-pool model

Fung et al. (2005) PNAS, 102, 11201-11206



Increasing model complexity

Vegetation carbon pools and fluxes in the Community Land Model
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CLMA4.5: 70 carbon balance equations (including

CLMS.0 Technical Description: vertically resolved soil carbon in 10 soil layers)

cesm.ucar.edu/models/cesm2/land
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As an example of complexity, the current carbon cycle model at NCAR has some 24 vegetation carbon pools and 70 carbon balance equations. Remember that the CASA’ model had 12 total carbon pools.


The model development process

Faulty understanding of processes leads to poor

comparison of model with observations

Add another process to reduce the bias,
commonly with at least one poorly known

parameter

Tune the model until a better simulation is

obtained

Publish assuming the moral high ground

Insist that future models must include the new

process (my model is better than yours)

Repeat

Adapted from Colin Prentice

9th New Phytologist Workshop

“Improving representation of photosynthesis in Earth System Models”
Montauk, New York, USA, April 2014
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Deconstructing models

deconstruct: to take apart or examine (something) in order to reveal the basis or

composition often with the intention of exposing biases, flaws, or inconsistencies
(Merriam-Webster)

Monin-Obukhov similarity theory M@:@, [:_dl

060 o ow] oK
: - L _Clke)Y |+
Richards equation  — a:[ (€) a:] .

Bonan (2019) Climate Change and Terrestrial
Ecosystem Modeling (Cambridge University Press)
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We can go even further and deconstruct a model into its fundamentals. We have all heard about Monin-Obukhov similarity theory or the Richards equation for soil moisture or photosynthesis and stomatal conductance, but how are these equations implemented and used in a model? What are the choices that need to be made when constructing a model? We are not very good at discussing this. We need to take the mystery out of our models.


Modeling leaf photosynthesis

Farquhar, von Caemmerer & Berry

photosynthesis model
4, =min(4..4:)-R,

Rubisco-limited rate is

_ Kmﬂx(cf_l_*)
Cr’ +Kc (1+GE/K0]

“

RuBP regeneration-limited rate is

4 _J Cj_rs
7 4l +2T,

Farquhar et al. (1980) Planta, 149, 78-90
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As an example, consider the Farquhar, von Caemmerer, Berry photosynthesis model, which is widely used in land surface models


Microdecisions

Farquhar et al. (1980) model of C; photosynthesis

What rates:
o Rubisco-limited (V,,.,), RuBP regeneration-limited (J
o co-limited or minimum rate

RuBP regeneration:
o NADPH requirements or ATP requirements
o Rate of electron transport in relation to PAR

Parameters and temperature dependencies:
o K, K, I
oV J

cmax’

Ry

max’

o 0, &y, a

How to account for leaf nitrogen:

o Carboxylation (V,,.,), electron transport (J

max max

Temperature acclimation

max

), product-limited (TPU)

), light harvesting (chlorophyll)
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Many choices are made; often poorly documented as to why the choice was made


Are we modeling the same thing?

Light response CO, response
S ———
— 15 —~
Im Tm
) o
£ 10 £
@) — G'DAY —
= s BETHY g
= s JSBACH =1
e O-CN —
< 5 — CLM <
ED2
we JULES
O Femtm bttt te—tett—s 0 —l—l—l—l—t—l—l—l—l—l—l—l—l—l—l—l—l—l—l—l—l—t—t—
0 400 800 1200 0 200 400 600 800 1000
Q (umol m?s™) C, (umol mol™)

Rogers et al. (2017) New Phytol., 213, 22-42
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Presentation Notes
A model intercomparison showed that different implementations of the model give divergent results, despite using the same forcing variables and physiological parameters. This illustrates the human side of modeling: we all use the FvCB model, but we cannot agree on how to implement the equations


Two viewpoints

Data will solve the problem

Earth system models disagree wildly about the magnitude
and frequency of carbon-climate feedback events, and
data to this point have been astonishingly ineffective at
reducing this uncertainty.

Sellers, Schimel, et al. (2018) PNAS, 115, 7860-68

The equifinality thesis

Science ... is supposed to be an attempt to work towards
a single correct description of reality. It is not supposed to
conclude that there must be multiple feasible
descriptions of reality. The users of research also do not
(yet) expect such a conclusion and might then interpret
the resulting ambiguity of predictions as a failure (or at
least an undermining) of the science.

Beven (2006) J. Hydrology, 320, 18-36
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This is our dilemma moving forward. Both are right, though I lean more towards the Beven perspective. Requires ensemble forecasting: NWP, hydrology, climate prediction; but not yet ecology


Complexity itself is not the problem

Land as lower boundary Land as integral component
condition to atmosphere ) of the Earth system

Heterogeneity Carbon Cycle Crops, Irrigation

Stomatal Resistance Groundwater

Rosie Fisher (NCAR)




What is the problem?

Model proliferation: Many models, with each
group making different decisions at different
points in the model development process

Model sprawl: Ad-hoc approach to model
development without adequate infrastructure,
support, documentation, or testing

Model proliferation and model sprawl make it
difficult to test underlying hypotheses and
identify a clear path to model improvement

Adapted from Martyn Clark (NCAR)
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Reconstructing the Community Land Model (CLM)

Technical debt is a software engineering
concept that reflects the implied cost of .. or the kraken devouring a ship
additional rework caused by choosing an easy |
solution now instead of using a better

approach that would take longer
(Wikipedia)

Colossal octopus attacking a ship (Pierre
Denys de Montfort, 1801)
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If we can deconstruct a model, how do we reconstruct it?


Contrasting views of ecosystems

Individual based model
Ecosystem as individual trees

I

Plant : Leaf Fime root Wood
I
I

“““““““““““““““““““““ ) Demography
1 \ 1 \ { Life history characteristics

F————e e e

. : Structural ) Structural ) WD | FunCtlonaI tralts
Litter | Metabolic Metabolic I
: LiEnirlchu ase LiEnirl Cellulase Cellulase | Lignini | |
______________________________________ .[_ p——|
Growth
Potential growth | Diameter, age, height
Surface Soil Environmental | Light
miicrobe S el constraints Soil moisture
- Site quality

{; r: A -y
' = S
g DA -J‘Qwi!?'
: ViSsiTT
Growing degree-days ot il | I
Depth of seasonal thaw ) '_n - '||| {1
3 ! b i)
e A g | )
=T P ) < -
- ” d‘fﬁM:-m—
3 v }
o !

e
Slow 508 | g
. Regeneration
o= Mortality
Potential reproduction | Seed availability
Potential longevity Age Sprouting, layering
Environmental Stress Environmental | Light
constraints Fire constraints Soil moisture
Insects Site quality
Passive N growing degree-days
epth of seasonal thaw
* Seed bed conditions

Biogeochemical model
Ecosystem as system of interconnected pools

Bonan (2019) Climate Change and Terrestrial
Ecosystem Modeling (Cambridge University Press)
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This debate is evident in our ecosystem models. Biogeochemical models see an ecosystem as a system of interconnected pools and carbon flows within the system. This view is the prevailing paradigm by which ecosystems are represented in Earth system models. The opposite end of the spectrum represents an ecosystem as many individual plants and their demography.
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Coupling FATES and CLM

CLMS5 = Big-leaf canopy without
vertical structure

H, AE, E, T, T,

FATES is a cohort-based model of

vertically-structured canopy with
vegetation demography
ATM
H0 T
€0 /
\tZ % / /? /éhortand a r
Long-wave
’ /' / Radiation, L, albedo
2 Atmosphere T
2 flux rad
TV S |
T unlit
> \ Leaf flux Shaded
Tg Ground flux I

Enhances technical debt and
perpetuates expedient coding

practices

EEEEEEEEE
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Two ways to model plant canopies

Photographs of Morgan Monroe State Forest tower site illustrate two different
representations of a plant canopy: as a “big leaf” (below) or with vertical
structure (right)

A carpet of leaves A vertically-structured canopy

III

“incorrect but usefu “correct but useless”

Raupach & Finnigan (1988) Aust. J. Plant Physiol., 15, 705-716




Debate “settled” decades ago

A ONE-DIMENSIONAL THEORETICAL
DESCRIPTION OF THE VEGETATION-
ATMOSPHERE INTERACTION

W. JAMES SHUTTLEWORTH
Institute of Hydrology, Wallingford, Oxon, England

Boundary-Layer Meteorology 10 (1976) 273-302. All Rights Reserved
Copyright © 1976 by D. Reidel Publishing Company, Dordrecht- Holland

Viewpoint
Aust. J. Plant Physiol., 1988, 15, 705-16

‘Single-layer Models of Evaporation from Plant Canopies are Pl BelEnG Snrmmen SR =L SRR
Incorrect but Useful, Whereas Multilayer Models are Correct but

Useless’: Discuss "
Simple scaling of photosynthesis from leaves to canopies

M. R. Raupach and J. J. Finnigan without the errors of big-leaf models
Centre for Environmental Mechanics, CSIRO, G.P.O. Box 821, Canberra, A.C.T. 2601, Australia. D. G. G. DE PURY & G. D. FARQUHAR

Environmental Biology, Research School of Biological Sciences, Institute of Advanced Studies, The Australian National

University, Canberra, ACT, Australia

Agricultural and Forest Meteorology 91 (1998) 89-111

A two-leaf model for canopy conductance, photosynthesis and
partitioning of available energy I:
Model description and comparison with a multi-layered model

Y.-P. Wang™”, R. Leuning”

* CSIRO Division of Atmospheric Research, PMB # 1, Aspendale, Vic 3195, Australia
P CSIRO Land and Warer, FC Pye Laboratory, Canberra, ACT 2601, Australia
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Multilayer canopy

Leaf gas exchange based on water-
use efficiency optimization while
preventing leaf desiccation (plant
hydraulics); sunlit and shaded leaves

Williams et al. (1996) Plant Cell Environ., 19, 911-27
Bonan et al. (2014) Geosci. Model Dev., 7, 2193-2222

ht-::p l_/"—x
_ L

Canopy turbulence and roughness
sublayer

Harman & Finnigan (2007, 2008) Boundary-
Layer Meteorol., 123, 339-63; 129, 323-51

Bonan et al. (2018) Geosci. Model Dev., 11, 1467-96

|
Az| z J— —ubqK AL— —

( - / Solve a system of linear
N 4,' equations for 6, q, Tee,rw Techa
- f If’ Ryder et al. (2016) Geosci. Model Dev., 9, 223-45
1\ I,r' Bonan et al. (2018) Geosci. Model Dev., 11, 1467-96
- N = -

The physics and physiology of the
multilayer canopy are simpler and
more consistent with theory than is
the CLMS5 big-leaf canopy (with

1 many ad-hoc parameterizations and
much technical debt)
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Can collapse the system to one canopy layer


Above-canopy fluxes

US-UMB, July 2006 (deciduous
broadleaf forest)

The 42-layer canopy (red)
better reproduces the
observations (blue) with
reduced RMSE compared to the

1-layer canopy (magenta)

Bonan, Patton, Finnigan, et al. (unpublished)
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How good is a big-leaf model?

Cross-site synthesis

7 forest eddy covariance

sites (Ameriflux)

56 site-years of data

The multilayer canopy
better reproduces the
observations (reduced
RMSE), particularly for
latent heat flux, GPP,
and friction velocity

Bonan, Patton, Finnigan, et al. (unpublished)
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Canopy profiles

Vertical profiles within the canopy are important

21

18
15
12

Height {m)

o w o W

0.00 0.10 0.20 0.30 0.40
Leaf area density (m* m™)

21 1
18
15
12

Height (m)

L= I = T (=

0.3 06 09 1.2 15
Wind speed (m s™)

Bonan, Patton, Finnigan, et al. (unpublished)

21 -
18 -
15 -
12 -

=TI s T = T =]
i 1

248 252 256 26.0 264 26.8
Daytime air temperature (°C)

18 I L
15 i -
12 4 .
9 ,
6 : -

200 400 600 800 1000
APAR (umol m®s™)

21 4 : ,

184 | d i

159 | L

12 r

9 @ -

6 : '-

31 | -

0 t—4—m—m——>
140 160 18.0 20.0
Nighttime air temperature (°C)

21(_'\

18 1

15 4

12 4

9 -

6 -

3 1

0 -

-18 -1.5 -1.2 0.9 0.6
Leaf water potential (MPa)

46



How does LWP affect scaling error?

US-Me2 (July 2004)

Baseline (with water stress)
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How does LWP affect scaling error? .| ——]

US-Me2 (July 2004)
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Land in Earth system models

The CESM perspective ...

Atmosphere
model

//States and fluxes
to land

Bonan (2019) Climate Change and Terrestrial
Ecosystem Modeling (Cambridge University Press)

... models as boundary conditions
to other models

49

But where does the atmosphere stop and

the land begin? Or, what is the “surface”
in a land surface model?

www.datnature.com



Take home points

50

Earth system models are an important
science tool

Alternative socioeconomic pathways
Identify ecological processes that determine
climate

Test generality of ecological theories at the

Glaciers

Biosphere—atmosphers

exchanges
Smioke

e

Rn.H.AE

Runaoff

iy

Subsurface drainage

YU
v ij“i
) Y,

il

05 CH,
N

2

Wetlands

€04, CHy, M50,
chemistry, aerosols

Air-sea ice
O, flux

T

Lakes

Solar
input

Ocean-atmosphera
exchanges SeaI

.

macroscale Bonan (2016) Annu. Rev. Ecol. Evol. Syst., 47, 97-121

There is much uncertainty in the models
Modelers need to do better at characterizing
uncertainty

/

s Why is a particular answer attained?

/

** What is the underlying theory?
Observationalists need to understand uncertainty

X/

s Easy to criticize models for lacking a process

R

% More authentic process representations may
not reduce uncertainty

* More data may not be able to solve the

problem

*

D)

L)

The path forward requires a new generation of
interdisciplinary Earth system scientists who
combine theory, numerical modeling, observations,
and data analysis

Overcoming disciplinary chauvinism
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