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Climate risk, extreme events. Model uncertainty, soil water limitation.
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Drought/heat-related tree mortality 1970-
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Tree mortality. Stress, temp, drought. Global

Allen et al. 2010, For Ecol Manag



Tree mortality. Stress, temp, drought; global
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Mortality Rate (%/yr)

Mortality rates rising globally
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Early frameworks for understanding tree mortality

Combination of stress from adverse environment, competition/suppression + pest or pathogen attack (& fire)
How to define death? Physical, physiological?
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Extending the framework, water stress focus
- Improved accounting for water stress: altered tissue water potential, hydraulic conductance, leaf area
- Interactive combination of: (i) hydraulic conductivity, (ii) carbon availability and (iii) pests/pathogens
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Water potential,  determines the moisture stress
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Multiple tree traits reflecting or influencing transpiration

Physiological traits (leaf)
* Stomatal regulation

* Turgor loss point

* Cuticular conductance

Physiological traits (common)

= \/ulnerability to cavitation
i B

* Maximum hydraulic conductance
* Capacitance and water storage

* Cell membrane permeability
(aquaporin regulation)

Physiological traits (root)

» Cortical lacunae formation

* Root shrinkage/hydraulic isolation
» Soil-root hydraulic conductance

Morphological traits (shoot)

* Stomatal anatomy

+ | eaf vein density

» Total leaf area

» | eaf shedding/drought deciduous
* | eaf to sapwood area ratio

Xylem anatomical traits

* Xylem conduit size, number and
connectivity

* Pit membrane thickness/porosity
» Wood density

Morphological traits (root)
* Root to shoot ratio

* Hooting depth

* Fine root loss

Choat et al. 2018 Nature
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Wide global variation (eg to -14 MPa for P50),

L] L]
[} "
8 | comatal conductance L5 of xjfem hychrafic conductarce _ but conserved hydraulic safety margin
5 o . .
g 3 [y at P50] — [min Y experienced]
o
g £z a 10
a A .
E [ i ga ) —= Angiosperms
51 g = 8t A HE Gymnosperms -
i S-g .
£ o | ,
o+ - %% = 6 a
w= o
g =1 S < al . . |
o] o = . .
= | 4 3 S
L 3 £ ol H : t.) J
]
= - Cuticular conductahce g
L1 I 1 1 1 L = 0 - — _ _
c T T T T T T k]
f | 8 ol |
Stomatal conductance
—4r '} . A
L Leaf shedding 1 Increasing mean annual precipitation
_6 T T T
- Cuticular condugtance - b 12 A
. T ¢ 1
— 8r 1
g
| Plant water storage 7] gm 6l . ? |
B a
£ 4l . 1
[ 1 ] 1 1 1 1] 2 4
Increasing djought gtress é ol % i
Decreasing ¥, = o
I -+
-2t ¢ Increasing mean annual precipitation 1
Toe—
Mediterranean  Temperate Tropical Tropical
and woodland forest seasonal forest  rain forest

Choat et al. 2012, 2018 Nature



Metrics associated with drought-mortality: Hydraulic? Carbon?

Lethal leaf water

Pgg (-MPa)

Seedling experiments linking mortality with
hydraulic vulnerability

Seedlings dried down and then re-watered to
determine limit for recovery
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Metrics associated with drought-mortality: Hydraulic? Carbon?

Tropical seedlings, multiple species: non-structural Mediterranean trees (Pinus sylvestris): low NSC
carbohydrates (NSC) extend period before death. associated with low leaf area & mortality
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Metrics associated with drought-mortality: Hydraulic? Carbon?
Both important — but is there a dominant signal?
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% Dry mass starch

Metrics associated with drought-mortality
Evidence from natural drought/tree branches
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Branches of drought-damaged trees: highly visible



Drought-mortality: large trees tend to be most at risk

Globally distributed
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Maximum height (m)
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Taller trees more hydraulically
vulnerable (P50 closer to zero)
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How does these patterns hold out at
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Liu et al. 2019
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Mortality (%)

7 yr effects of drought treatment

~20% biomass loss after 7 years; lag for first 3 years
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- mortality of large trees dominates,

- similar breakpoint at 50% relative extractable water
- similar in/tolerant taxa
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14 years of drought treatment at Caxiuana

Mortality increases to 40%; large trees
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Large trees - highest mortality; greater hydraulic vulnerability (big trees: P50 closer to zero )
BUT: ONLY 6 taxa considered....biodiversity?
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Regional context?

Compared with climate-affiliations across S. America
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Wet-affiliated species have higher mortality risk
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If P50 is quantified for many species, what is the community-level signal?

PLC (%)

PLC (%)

Low seasonality forest (Manaus)

Water potential (MPa)

Low seasonality vs high seasonality Amazon forests

Tapajos: more drought-stressed than Manaus

- More dry affiliated species at Tapajos
- Community weighted P88 lower (drought tolerant)

- Similar canopy conductance response to VPD
...explained by species differences in hydraulic

vulnerability

....P50/P88 traits contribute to species filtering during
extreme or repeated droughts?

Barros et al. 2019 New Phyt



Effects of hydraulic diversity in other systems?

Drought sensitivity
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Higher diversity in hydraulic traits leads to
drought stability?

May be scale- or ecosystem-dependent
(eg, Grossiord et al. 2014)

Anderegg et al. 2018, Nature



A rapidly evolving field; emerging issues
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1. Relative water content (Martinez-Vilalta et al. 2019)
Potential to: integrate drought stress physiology
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3. Foliar water uptake
Wide occurrence; potentially large eg, Amazon (Binks et al. 2019)
Alleviate daily drought stress/reduce mortality risk?

4. Incorporating hydraulics into models
Linking soil moisture-water potential-transpiration (Eller et al. 2018)
New capacity to account for drought-recovery and mortality



Summary

1. Climate risk, secular and episodic: increased and repeated drought stress.
2. Evidence of increasing mortality related to drought, globally

3. Traits determining loss of hydraulic conductance related to moisture stress, water use
and mortality risk

4. Focus on P50/P88 vs: size, species distribution, stability under drought

5. Immediate challenges

: scaling over space (trait diversity, soil moisture supply); time (response, recovery,
plasticity), using new/expanding datasets (eg SAPFLUXNET)

: new modelling frameworks: soil-plant hydraulics, allocation, leaf phenology

: quantifying biotic attack thresholds

: connecting to remote sensing capability, including water and temp (VOD, Ecostress)









